<u>Topic 9a—Qualitative analysis: tests for ions</u>

<u>9.1—Unique tests</u>			9.5b—Testing for sulfate ions	9.8—Instrumental methods of analysis
It is important that tests for ions are unique, to ensure that the			To test for sulfate ions, add the solution to some dilute	Instrumental methods of analysis are preferal
results are not inconclusive.			hydrochloric acid, and then add some barium chloride solution.	Faster— tests take less time to carry out.
9.2—Flame tests			If a white precipitate appears, the ion was sulfate.	More sensitive — smaller samples of chemical
<i>Match up</i> the metal ion to the correct flame test colour.			The acid is needed to react with any carbonate ions that would	More accurate — the true identity of the subs
a) Lithium ion Li ⁺ Pod Plue groop		Plue groop	also form a barium salt precipitate, and therefore give a false	9.9a—Flame photometry & concentration cu
b) Sodium ion, Na ⁺	Vellow	tilee	result. For the same reason, we cannot use sulfuric acid, as it	Calibration curves can be used to indicate the
c) Potassium ion K^+	Lilac	Orango rod	contains sulfate ions.	We can then use the
d) Calcium ion Ca^{2+}	Orange-Red	Bod		calibration curve to identify 200 -
e) Conner (II) ion Cu^{2+}	Blue-green	Yellow-		the unknown
	Dide green	Tenow	9.5c—Testing for halide ions	concentration of a sample. 2 160-
9.3—Adding sodium hydroxide to test for ions in solution			To test for halide ions, add the solution to some dilute nitric	A sample of unknown
<i>Match up</i> the metal ion to the correct coloured precipitate			acid, and then add some silver nitrate solution. If a precipitate	concentration, known to
formed.			appears, the ion was a halide.	contain Na ⁺ ions, gave a to 1204
a) Aluminium ion, Al ³⁺	White	Blue	Match up the halide ion to the correct coloured precipitate.	response of 140. This would 👷
b) Calcium ion, Ca ²⁺	White	Brown-	Chloride ion, Cl ⁻ White Cream	indicate an approximate 🗧 80-
c) Copper (II) ion, Cu ²⁺	Blue	-Green-	Bromide ion, Br Cream White	concentration of sodium ions $\overset{\omega}{\mathcal{D}}$
d) Iron (II) ion, Fe ²⁺	Yellow	White-	Iodide ion, I ⁻ Yellow Yellow	of 32 / 33 ppm. 40-
e) Iron (III) ion, Fe ³⁺	Brown	-White-	The acid is added to remove any c <mark>arbonate</mark> ions, which would	A second sample was known
The positive result for the aluminium ion and the calcium ion			react with the silver ions to give a precipitate of silver	to contain 15 ppm of Na ⁺
are the same, so a further test is required. When further			carbonate.	ions. The expected response 0
are the same, so a further test is required. When further				for this sample would be
whereas the calcium hydroxide doesn't			9 6—CP7—Identifying ions	approximately 78.
f) Add sodium hydroxide to a solution and heat it. If ammonia			You will need to describe how to carry out a series of the tests	0.02 Elama abatamatry 8 saastra*
gas is given off, then ammonium ions were present in the solu-			detailed in sections 9.2-9.5 to identify the formula of a	As with calibration surves, we can use cample
tion			compound (see 9.7)	As with calibration curves, we can use sample
			<u>9.7—Identify unknown ions</u>	
9.4—Testing for ammonia			A compound in a flame test produces a yellow flame. When	Ca:
Hold a piece of damp red litmus paper over the gas. If it turns			nitric acid is added, nothing happens. A small amount of silver	
blue, then ammonia is present.			nitrate solution is added, and a white precipitate forms. This	
<u>9.5a—Testing for carbonate ions</u> To test for carbonate ions,			suggests that the compound was sodium chloride.	
			A compound in a flame test produced no coloured flame.	National
add the solid or solution t	o (]	Sodium hydroxide was added to the solution of this compound,	
an acid, and bubble the		owator	upon which a white precipitate formed, which dissolved when	
resulting gas through			further sodium hydroxide was added. In a separate test, dilute	
limewater. If it was a	JIL		nyarochioric acid was added to the compound, and no changes	The spectrum below is likely to be of a sample
carbonate, the gas made is			were observed. Barium chloride was then added to the	
carbon dioxide and the		rbonate	solution, upon which a white precipitate was formed. The	
limewater will turn cloudy	/. / X	acid	results from the above tests suggest that the unknown	
, 		$\overline{}$	compound was aluminium sulfate.	
1				

