## **Topic 7b—Heat energy changes in chemical reactions**

| 7.9—Heat energy changes in reactions                                                               | 7.13—Overall heat energy changes                                                         | 7.15—Activation        |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------|
| a-salts dissolving in water                                                                        | a—Exothermic reactions                                                                   | The activation en      |
| When salts dissolve in water, the ionic lattice breaks down to form free                           | A reaction will be exothermic overall when more energy is given out during               | particles must have    |
| moving ions. Sometimes, salts dissolving result in the temperature increase,                       | bond making, than is taken in during bond breaking.                                      | with one another       |
| and sometimes the temperature goes down: it depends on the salt that is                            | b—Endothermic reactions                                                                  |                        |
| dissolving.                                                                                        | A reaction will be endothermic when more energy is taken in during bond                  | 7 16 - Postion n       |
| b-neutralisation reactions                                                                         | making than is given out during bond breaking.                                           | <u>7.10—Reaction p</u> |
| In a neutralisation reaction, an acid reacts with a base to produce a salt and                     |                                                                                          | EXOLITEITIIC TEACL     |
| water. These reactions always lead to a temperature increase, and so are                           |                                                                                          |                        |
| exothermic.                                                                                        |                                                                                          |                        |
| c—displacement reactions                                                                           | 7.14—Calculating bond energy changes (HT only)*                                          |                        |
| In a displacement reaction, a more reactive element (a metal or                                    | We can calculate the overall energy change in a reaction by calculating the              |                        |
| halogen, for example) replaces a less reactive element in a solution of its                        | changes in bond energy. The equation required is:                                        |                        |
| salt. These reactions tend to release energy, and so are exothermic.                               | Energy change = $\Sigma$ energy of bonds broken - $\Sigma$ energy of bonds made.         |                        |
| d—precipitation reactions                                                                          | A shorthand way to remember this is "BREAK TAKE MAKE".                                   |                        |
| In a precipitation reaction, an insoluble solid is formed in the                                   | You will be provided the bond energies that are relevant to the equation you             | a) this arrow          |
| reaction between two solutions. Some precipitation reactions lead to a                             | are considering.                                                                         | a) this allow          |
| temperature increase and so are exothermic. However, some cause the                                | Step 1: calculate the total sum of <b>all</b> of the bond energies in <b>all</b> of the  | taken in for this c    |
| temperature to decrease, and energy is taken in overall. These changes are                         | reactants (energy of bonds broken). It may be worthwhile drawing out the                 | h) this arrow room     |
| described as being endothermic.                                                                    | bonds in the molecule(s).                                                                | (oporgy bas boon       |
| All of the reactions above can make use of measuring the temperature                               | NB. You can 'cancel out' any identical bonds at this step: for example, if               | c) this arrow room     |
| change to calculate the energy change in the reaction, using the equation                          | there are 3 C-H bonds on both sides, you don't need to include these in your             | is smaller than th     |
| energy change (J) = mass of substance heated (kg) x specific heat capacity                         | calculation.                                                                             | Endothermic read       |
| $(J \text{ kg}^{-1} \text{ °C}^{-1})$ x temperature change (°C).                                   | Step 2: calculate the total sum of <b>all</b> of the bond energies in <b>all</b> of the  | Endothermierede        |
|                                                                                                    | products (energy of bonds made). It may be worthwhile drawing out the                    |                        |
|                                                                                                    | bonds in the molecule(s).                                                                |                        |
| 7.10—Exothermic reactions                                                                          | Step 3: Energy change = $\Sigma$ energy of bonds broken - $\Sigma$ energy of bonds made. |                        |
| Exothermic reactions are reactions in which heat is given out to the                               | Example: calculate the total energy change for the following reaction:                   |                        |
| surroundings. This leads to an increase in temperature, and so exothermic reactions feel warm/hot. | $H_2 + Cl_2 \longrightarrow 2 HCl$                                                       |                        |
| 7.11—Endothermic reactions                                                                         | Bond energies (kJ mol <sup>-1</sup> ): H-H = 436, Cl-Cl = 242, H-Cl = 431.               |                        |
| Endothermic reactions are reactions in which heat is taken in from the                             | H-H + CI-CI → 2 H-CI                                                                     | a) this arrow          |
| surroundings. This leads to a decrease in , and so                                                 | Step 1:                                                                                  | representsthe          |
| endothermic reactions feel cool/cold.                                                              | H-H + CI-CI = 436 + 242 = 678 (kJ mol-1)                                                 | activation energy      |
| 7.12 Band breaking and making                                                                      |                                                                                          | step, as it involve    |
| <u>1.12</u> <u>BOILD Dreaking and making</u>                                                       | Step 2:                                                                                  | b) this arrow repr     |
| broken, before new bonds are made                                                                  | $2 \times H-CI = 2 \times 431 = 862 (kJ mol^{-1})$                                       | (energy has been       |
| Broaking bonds is an ondethermic process: that is onergy must be taken in                          |                                                                                          | c) this arrow repr     |
| from the surroundings                                                                              | Step 3:                                                                                  | energy is smaller      |
| Conversely, bond making is an exothermic process, and                                              | $678-862 = -184 \text{ kJ mol}^{-1}$                                                     |                        |
| conversely, bond making is an exothermic process, and                                              | NB. A negative energy change value indicates an exothermic reaction                      |                        |
| energy is given out to the surroundings.                                                           |                                                                                          |                        |

## energy

ergy is the minimum amount of energy that ve in order that they can react when they collide . It is the amount of energy needed to break bonds.



- tivation energy of the reaction (energy has to be tep, as it involves bond breaking).
- resents the overall energy change for the reaction given out overall, so it is exothermic.
- esents the catalysed reaction (the activation energy e 'uncatalysed' reaction.
- <u>ction</u>



- of the reaction (energy has to be taken in for this s bond breaking).
- resents...the overall energy change for the reaction taken in overall, so it is endothermic.
- esents...the catalysed reaction (the activation than the 'uncatalysed' reaction.