Common acids \& alkalis				
Name Formula Salt formed by acid Name Formula Hydrochloric acid HCl Chloride Sodium hydroxide NaOH Sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$ sulfate Potassium hydroxide KOH Nitric acid HNO_{3} Nitrate Lithium hydroxide LiOH				

3.15-Soluble salt from an insoluble reactant
 3.15a-Adding a excess of the insoluble reactant

Explain why we add an excess of insoluble solid in this type of reaction.
To ensure all of the acid reacts.

3.15b-Removing the unreacted excess

Name the separating technique we use to remove the unreacted solid, and explain why this step is necessary.

Filtration

To remove the unreacted base and ensure a pure product

.15c-Salt \& water solution

Explain why only the salt and water are left in the solution, and name the separating technique we use to collect a sample of salt crystals.

All of the unreacted solid has been removed \& the acid is fully reacted; we use crystallisation.

3.16-Soluble salt from a soluble reactant (e.g. alkali)

3.16a-Titration

Explain why we must use titration, referring to what would happen
if we added an excess of one of the reactants.
We must use titration to work out the correct amount of acid to add. All of the chemicals are colourless solutions, so we can't tell when the reaction is complete

3.16b-The volume of each reactant

Explain why it is important to know the exact volumes of the two reactants that are reacted together
oo ensure that the product is pure.

3.16c-Salt \& water solution

Explain why only the salt and water are left in the solution, and name the separating technique we use to collect a sample of salt crystals.

We have exactly neutralised the acid \& alkali; crystallisation.

