Motion Revision Worksheet			Draw a distance/time graph for the Someone is walking along at 1.5m/s, 10 seconds					
Fill in the follow	ving table:		Mr Foster w	alks 10 metres from his 15 seconds, stops for 5	acceleration:	ng at om/s. Calculate their		
	Vector	Scalar	seconds real rushes back	ises he forgot his coffee and in 5 seconds.				
Definition						acceleration=		
Examples					Draw a velocity/tim scenario. A bus starts from s later is doing 12m/s 10 seconds before a seconds later. 20 se stopped again.	e graph for the following stationary and 20seconds s. It maintains this speed for accelerating to 15m/s 5 econds later the bus has		
				· · · · · · · · · · · · · · · · · · ·				
Write down the equation for calculating speed and complete the formula triangle:		Mr. Fosters his classroor	istance/time graph calculate speed when rushing back to n:					
Speed =								
		\wedge		Speed=				
			Define accel	eration:				
						J		
A car travels 2r 9m/s, calculate travelled:	ninutes at how far they	What is the diffe between averages instantaneous spe	rence speed and ed?	Write down the equation for acceleration and complete the	calculating e formula triangle:	What is the value of acceleration due to gravity?		
		······				Why might an object in free fall not accelerate at this rate?		
	distance=							

Motion Revision Worksheet

Using your velocity/time graph calculate the distance travelled in the first stage of the bus journey.

Distance=

Complete the following table, comparing what lines mean on distance/time graphs and velocity/time graphs:

	Distance/time graph	Velocity/time graph
A horizontal line.		
A sloping line upwards.		
A sloping line downwards.		

What	are t	he i	units	that	we	comm	only	use	for t	he '	follov	ving
measi	ires:											_

Speed:

Velocity:

Acceleration:

Time:

Distance:

Displacement:

Rate each of the learning outcomes for how you feel about them:

- **CP1.1** Describe the difference between weight and mass.
- **CP1.2** Explain the difference between a vector and a scalar quantity.
- **CP1.2** Describe the difference between displacement and distance.
- CP1.2 & CP1.3 Describe the difference between velocity and speed.
- **CP1.2** Define the terms: acceleration, force, momentum, energy.

CP1.4 Recall formulae relating distance, speed and time.

CP1.4 Use formulae relating distance, speed and time.

CP1.10 Recall typical speeds for walking, running, cycling and travelling by car.

CP1.5 Interpret distance/time graphs (including recognising what the steepness of the line tells you).

CP1.5 Represent journeys on distance/time graphs.

CP1.5 Determine speed from the gradient of a distance/time graph.

CP1.6 Recall the formula relating acceleration, velocity and time.

CP1.6 Use the formula relating acceleration, velocity and time.

CP1.7 Recall the formula relating acceleration, velocity and distance.

CP1.7 Use the formula relating acceleration, velocity and distance.

CP1.12 Recall the acceleration in a free fall.

CP1.12 Estimate the magnitudes of some everyday accelerations.

CP1.8 Represent journeys on velocity/time graphs.

CP1.8 Interpret velocity/time graphs qualitatively.

CP1.8 Calculate uniform accelerations from the gradients of velocity/time graphs.

CP1.8 Determine the distance travelled from the area under a velocity/time graph.

Motion Revision Worksheet

Using your velocity/time graph calculate the distance travelled in the first stage of the bus journey.

20 x 12 / 2 = 120m

Distance= 120m

Complete the following table, comparing what lines mean on distance/time graphs and velocity/time graphs:

	Distance/time graph	Velocity/time graph		
A horizontal line.	Stationary	Constant Speed		
A sloping line upwards.	Moving away at a constant speed	Accelerating		
A sloping line downwards.	Returning to where the journey began at a constant speed.	Decelerating		

What are the units that we commonly use for the following measures:

Speed: m/s

Velocity: m/s

Acceleration: m/s²

Time: Seconds

Distance: Meters

Displacement: Meters

Rate each of the learning outcomes for how you feel about them:

CP1.1 Describe the difference between weight and mass.

- **CP1.2** Explain the difference between a vector and a scalar quantity.
- **CP1.2** Describe the difference between displacement and distance.
- CP1.2 & CP1.3 Describe the difference between velocity and speed.
- **CP1.2** Define the terms: acceleration, force, momentum, energy.

CP1.4 Recall formulae relating distance, speed and time.

CP1.4 Use formulae relating distance, speed and time.

CP1.10 Recall typical speeds for walking, running, cycling and travelling by car.

CP1.5 Interpret distance/time graphs (including recognising what the steepness of the line tells you).

CP1.5 Represent journeys on distance/time graphs.

CP1.5 Determine speed from the gradient of a distance/time graph.

- CP1.6 Recall the formula relating acceleration, velocity and time.
- **CP1.6** Use the formula relating acceleration, velocity and time.

CP1.7 Recall the formula relating acceleration, velocity and distance.

CP1.7 Use the formula relating acceleration, velocity and distance.

CP1.12 Recall the acceleration in a free fall.

CP1.12 Estimate the magnitudes of some everyday accelerations.

CP1.8 Represent journeys on velocity/time graphs.

CP1.8 Interpret velocity/time graphs qualitatively.

CP1.8 Calculate uniform accelerations from the gradients of velocity/time graphs.

CP1.8 Determine the distance travelled from the area under a velocity/time graph.