1.46-Describe an experiment to determine empirical formula This is a classic practical involving heating magnesium in a crucible to a constant mass. Outline the method below. Think about the equipment you will need.

Record the mass of a piece of metal. Place it in a crucible. Record the total mass. Heat the metal strongly. Lift the lid to allow oxygen in. Continue heating until the mass remains constant. Calculate the mass of oxygen that reacted. Use the mass of oxygen \& magnesium to calculate the empirical formula.
What are the safety concerns, and how would you manage them? Hot equipment-allow to cool before handling / use tongs to move the hot crucible.

Hot products leaving crucible-wear goggles to protect eyes.

1.47a-Conservation of mass: closed system

In a closed system, the total mass of the reactants is equal to the total mass of the products, as atoms cannot be created or destroyed in a chemical reaction.

1.47b-Conservation of mass: open flask

If a gas is being made in a reaction, it may appear as though mass is being lost. However, this mass is in the gas that has been released by the reaction, so mass is conserved.

1.48-Calculating reacting masses

Step 1: Do the calculation (right) for \qquad the substance you have this data for. relative atomic or formula m
Step 2: Use the equation to work out the ratio of the substance you need to find the mass for to the substance you worked out in step 1. Step 3: Ratio x relative atomic or formula mass x answer from step 1. Calculate the maximum mass of iron that can be extracted from 320 g
of iron oxide. A_{r} : $\mathrm{Fe}=56, \mathrm{O}=16$.
$2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \longrightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}$
320 \qquad $-=2$
$56+56+16+16+16$
Fe: $\mathrm{Fe}_{2} \mathrm{O}_{3}=4: 2$
$4 / 2 \times 56 \times 2=\underline{224 g}$

