## 5.8 -Concentration in $\mathrm{mol} \mathrm{dm}^{-3}$ and $\mathrm{g} \mathrm{dm}^{-3}$ (HT only)

Concentration is a measure of the quantity of solute which is dissolved in a solvent. It can be measured either in $\mathrm{g} \mathrm{dm}^{-3}$ or $\mathrm{mol} \mathrm{dm}{ }^{-3}$
Mass concentration $=$

$$
\text { mass }(g)
$$

$$
\text { volume }\left(\mathrm{dm}^{3}\right)
$$

number of moles ( mol )
Molar concentration $=\frac{\text { volume }\left(\mathrm{dm}^{3}\right)}{\text { vol }}$
You may be expected to convert between mass and moles. To do this, use the equation: $\qquad$ mass (g)
number of moles $=\quad \overline{\text { relative mass }\left(\mathrm{g} \mathrm{mol}^{-1}\right)}$
You are also likely to need to convert between $\mathrm{cm}^{3}$ and $\mathrm{dm}^{3}$. To convert from $\mathrm{cm}^{3}$ to $\mathrm{dm}^{3}$, you simply divide by 1000 .

## 5.9-CP5-Titration

Method:

1) Measure out a set volume of alkali using a pipette.
2) Add this to a conical flask.
3) Add a couple of drops of indicator (for example
phenolphthalein or methyl orange).
4) Fill a burette with acid. Record the start volume.
5) Place the conical flask on a white tile.
6) Add acid to the alkali. Towards the end, add it dropwise. 7) When the indicator has changed colour permanently, stop adding acid. Record the final volume.
7) Repeat until you have concordant titres (results).
8) Repeat steps 1-8, using the same volume of acid, and no indicator.

Suggest a safety precaution that should be taken when carrying out a titration:
Ensure you wear safety glasses to protect the eyes.
Ensure any spillages on the skin are rinsed with plenty of water.

### 5.11-Calculating percentage yield

Percentage yield is a measure of how much product is made compared to the amount that should theoretically have been made.
The calculation is:
Percentage yield $=\quad \frac{\text { actual yield }}{\text { theoretical yield }} \times 100$
The value for a percentage yield can never be more than $100 \%$.
5.10-Calculating unknown concentration/volume from a titration (HT only)* The key formula here is:
number of moles $=$ concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \mathrm{x}$ volume $\left(\mathrm{dm}^{3}\right)$.
e.g. calculate the concentration of hydrochloric acid, when $25.20 \mathrm{~cm}^{3}$ reacts with $20 \mathrm{~cm}^{3}$ of $0.800 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution

1) Set out a table (shown right)
2) Populate the table with the data you are given (there will be three data given, concentrations or volumes). Remember to convert volumes to $\mathrm{dm}^{3}$.

|  | Acid | Alkali |
| :--- | :--- | :--- |
| $n$ | 4) 0.016 | 3) 0.016 |
| $C$ | 5) 0.635 | 2) 0.800 |
| $V$ | 2) 0.0252 | 2) 0.020 |

3) Calculate the number of moles of the substance you have a $C$ and $V$ for.
4) Use the balanced equation to identify the number of moles of substance you are finding the value for.
5) Calculate the missing value by rearranging $n=C V$ :
$\mathrm{C}=\mathrm{n} / \mathrm{V}=0.635 \mathrm{~mol} \mathrm{dm}^{-3}$

### 5.12-Reasons why percentage yield will not be $100 \%$

a) There may be incomplete reactions, so not all of the reactants are converted to products (especially in a reversible reaction).
B) There may be loss of substance during a reaction, for example when transferring a solid between containers.
C) There may be unwanted side reactions, meaning some of the expected product actually becomes a different chemical.

### 5.13-Atom economy

The atom economy is a measure of how much of the relative mass of the reactants is converted into a useful product.
By definition, the atom economy of a reaction with only one product is always $100 \%$, as all of the reactants become the useful product.

### 5.14-Calculating atom economy

Atom economy $=$ Relative mass of useful products Relative mass of all products $\times 100$
The value for atom economy can never be more than $100 \%$.

### 5.11 \& 5.14-Practice calculations*

Calculate the atom economy \& percentage yield for the following reaction to make hydrogen gas: $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{2}+\mathrm{CO} . \mathrm{M}_{\mathrm{r}}: \mathrm{CH}_{4}=16, \mathrm{H}_{2} \mathrm{O}=18, \mathrm{H}_{2}=2, \mathrm{CO}=28$. The actual yield was 254 g and the theoretical yield was 320 g .

Percentage yield $=\frac{254}{320} \times 100=79.4 \%$
Atom economy $=\frac{3 \times 2}{(3 \times 2)+28} \times 100=17.6 \%$
5.15-Explaining choice of reaction pathway (HT only)*

Methods of making ethanol

| Method | \% yield | Atom economy | Rate |
| :--- | :--- | :--- | :--- |
| Hydration of ethene | Very high | 100 | Quick |
| Fermentation of glucose | Low | 51 | Very slow |

When selecting a reaction pathway, many factors need to be considered. As well as the above, the usefulness of side products should be considered, as well as position of equilibrium (for a reversible reaction). -Briefly explain which method is best for making ethanol.
Either hydration of ethene, as it has a higher atom economy, yield and rate (Although ethene is a product of crude oil, and is non-renewable)
Or fermentation of glucose as it has lower energy costs and the raw materials are from plants, which are renewable. (Although low rate, yield \& atom economy)

### 5.16-Molar volume of a gas, a.k.a. Avogadro's law (HT only)

One mole of any gas, at room temperature and pressure, will have a volume of $24 \mathrm{dm}^{3}$ (which is $24000 \mathrm{~cm}^{3}$ ).

### 5.17-Using molar volume of a gas (HT only)*

These calculations involve using molar volume, reacting masses and balanced equations to find a volume of gas produced in a reaction. e.g. 1.95 g of potassium reacts completely with water according to the equation:
$2 \mathrm{~K}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$. Calculate the volume of $\mathrm{H}_{2}$ formed in $\mathrm{dm}^{3}$.
$A_{r}: K=39, H=1, O=16$.

1) Calculate number of moles of potassium:
number of moles $=\frac{\operatorname{mass}(\mathrm{g})}{\text { relative mass }\left(\mathrm{g} \mathrm{mol}^{-1}\right)}=\frac{1.95}{39}=0.05 \mathrm{moles}$
2) From the balanced equation, 2 moles of potassium react to form 1 mole of hydrogen, therefore the number of moles of $\mathrm{H}_{2}=$ answer from step 1 divided by 2 $=0.025$ moles.
3) Multiply the number of moles calculated in step 2 by the molar volume of a gas ( $24 \mathrm{dm}^{3}$ ): $0.025 \times 24 \mathrm{dm}^{3}=0.6 \mathrm{dm}^{3}$.
5.18-Calculating volumes of gases involved in reactions (HT only)* In these questions, you will need to use balanced equations, and the molar gas volume, to identify the volume of gases involved in reactions. E.g. calculate the volume of ammonia that could (theoretically) be formed from $1250 \mathrm{~cm}^{3}$ of nitrogen and an excess of hydrogen.
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
4) Balance the equation (in an exam, this may be done for you).
5) Identify the ratio of the gases in the question. In this example, the ratio of nitrogen:ammonia is 1:2.
6) Convert the known volume to the unknown volume by multiplying or dividing by the appropriate value. In this case, multiply by 2.
7) Write your final answer. In this case, it is $2500 \mathrm{~cm}^{3}$.
