Горіс	Student Checklist	R	Α	G
Горіс	Explain why some elements can be classified as alkali metals, halogens or noble gases, based on their	-		Ë
	position in the periodic table			
	Recall the physical properties of alkali metals			
	Describe the reactions of lithium, sodium and potassium with water			H
	Describe the pattern in reactivity of the alkali metals, lithium, sodium and potassium, with water; and			<u> </u>
	use this pattern to predict the reactivity of other alkali metals			
a	Explain this pattern in reactivity in terms of electronic configurations			
Topic 6 – Groups in the periodic table	Recall the colours and physical states of chlorine, bromine and iodine at room temperature			<u> </u>
<u>c</u> t	Describe the pattern in the physical properties of the halogens, chlorine, bromine and iodine, and use			T
8	this pattern to predict the physical properties of other halogens			
Jer Jer	Describe the chemical test for chlorine			F
<u>ا</u>	Describe the reactions of the halogens, chlorine, bromine and iodine, with metals to form metal halides,			H
=======================================	and use this pattern to predict the reactions of other halogens			
i sc	Recall that the halogens, chlorine, bromine and iodine, form hydrogen halides which dissolve in water to			F
no	form acidic solutions, and use this pattern to predict the reactions of other halogens			
ָבֿ	Describe the relative reactivity of the halogens chlorine, bromine and iodine, as shown by their			F
9	displacement reactions with halide ions and use this to predict the reactions of astatine			
<u> </u>	HT ONLY: Explain why these displacement reactions are redox reactions in terms of gain and loss of			T
₫	electrons, identifying which of these are oxidised and which are reduced			
	Explain the relative reactivity of the halogens in terms of electronic configurations			T
	Explain why the noble gases are chemically inert, compared with the other elements, in terms of their			<u> </u>
	electronic configurations			
	Explain how the uses of noble gases depend on their inertness, low density and/or non-flammability			
	Describe the pattern in the physical properties of some noble gases and use this pattern to predict the			
	physical properties of other noble gases			
	Core Practical: Investigate the effects of changing the conditions of a reaction on the rates of chemical			
	reactions by: measuring the production of a gas/observing a colour change			
ges	Suggest practical methods for determining the rate of a given reaction			
an	Explain how reactions occur by discussing the collision theory			
된	Explain the effects on rates of reaction of changes in temperature, concentration, surface area to volume			
18	ratio and pressure in terms of frequency and energy of collisions			
nd energy changes	Interpret graphs of mass, volume or concentration of reactant or product against time			
و	Describe what a catalyst is			
e u	Explain how the addition of a catalyst increases the rate of a reaction in terms of activation energy			
₽.	Recall that enzymes are biological catalysts and that enzymes are used in the production of alcoholic			
eac	drinks			
ξ 2	Recall when chemical changes occur that they cause changes in heat energy			
S	Describe the differences between endothermic and exothermic in terms of energy taken in or given out			
tate	Recall if bonds are broken or made for each of the following reactions: endothermic and exothermic			
Topic 7 - Rates of reaction a	Describe why the overall heat energy change for a reaction is exothermic or endothermic in terms of			
	bonds being made or broken			
	HT ONLY: Calculate the energy change in a reaction given the energies of bonds (in kJ mol ⁻¹)			
	Explain the term activation energy			
	Draw and label reaction profiles for endothermic and exothermic reactions, identifying activation energy	İ		

	Edexcel Single Chemistry (1CI0) from 2016 Topic C8			
Topic	Student Checklist	R	Α	G
	Recall what a hydrocarbon is			
	Describe and explain what crude oil is and why it is important			
	Describe and explain the separation of crude oil into simpler, more useful mixtures by the process of			
	fractional distillation			
	Recall the names and uses of the following fractions: gases, petrol, kerosene, diesel oil, fuel oil and			
	bitumen			
	Explain how hydrocarbons in different fractions differ from each other in terms of boiling point, number			
	of C & H's, flammability and viscosity			
	Explain what a homologous series of hydrocarbon compounds is			
	Describe the complete combustion of hydrocarbon fuels including energy changes and products			
	Explain why the incomplete combustion of hydrocarbons can produce carbon and carbon monoxide			
9	Explain how carbon monoxide behaves as a toxic gas			
ë	Describe the problems caused by incomplete combustion in appliances that use carbon compounds as			
26	fuels			
뒫	Explain how impurities in some hydrocarbon fuels result in the production of sulfur dioxide			
Ш ТО	Explain some problems associated with acid rain			
a	Explain why, when fuels are burned in engines, oxides of nitrogen are formed and that they are			İ
els	pollutants			
Ŧ	Evaluate the advantages and disadvantages of using hydrogen, rather than petrol, as a fuel in cars			
.l ∞	Recall the names and sources of some renewable fossil fuels			
Topic 8 – Fuels and Earth science	Explain what cracking is and why it is necessary			
2	Recall that the gases produced by volcanic activity formed the Earth's early atmosphere			
	Describe what the Earth's early atmosphere was thought to contain			
	Explain what the oceans were formed from			
	Explain why the amount of carbon dioxide in the atmosphere decreases when the oceans were formed			
	Explain how the growth of primitive plants changes the composition of gases in the atmosphere			
	Describe the chemical test for oxygen			
	Describe and explain the greenhouse effect and name the gases that contribute to it			
	Evaluate the evidence for human activity causing climate change			
	Describe the potential effects on the climate of increased levels of carbon dioxide and methane			
	generated by human activity			
	Describe how effects on the climate may be mitigated: consider scale, risk and environmental			
	implications			

	Edexcel Single Chemistry (1CI0) from 2016 Topic C9a&b (Chem only)			
Topic	Student Checklist	R	Α	G
	Chem ONLY: Explain why the test for any ion must be unique			
	Chem ONLY: Describe flame tests to identify the following ions in solids: Li ⁺ , Na ⁺ , K ⁺ , Ca ²⁺ , Cu ²⁺ including			
	the colours of the flames			
	Chem ONLY: Describe tests to identify the following ions: Al ³⁺ , Ca ²⁺ , Cu ²⁺ , Fe ²⁺ , Fe ³⁺ , NH ₄ using NaOH			
	solution			
	Chem ONLY: Describe the chemical test for ammonia			
	Chem ONLY: Describe tests to identify the following ions: CO ₃ ²⁻ , SO ₄ ²⁻ , Cl ⁻ , Br ⁻ , l ⁻			
o o	Chem ONLY: Core Practical: Identify the ions in unknown salts, using the tests for the specified cations			
art	and anions in the specification			
2 p	Chem ONLY: Identify the ions in unknown salts, using results of the tests stated			
Σ	Chem ONLY: Describe that instrumental methods of analysis are available and that these may improve			
nist	sensitivity, accuracy and speed of tests			
Jer	Chem ONLY: Evaluate data from a flame photometer to determine the concentration of ions in dilute			
e c	solution using a calibration curve			
rat	Chem ONLY: Evaluate data from a flame photometer to identify metal ions by comparing the data with			
eda	reference data			
- Sc	Chem ONLY: To identify metal ions by comparing the data with reference data			
Topic 9a – Separate chemistry 2 part a	Chem ONLY: Recall the formulae of molecules of the alkanes, methane, ethane, propane and butane, and draw the structure of these			
opi	Chem ONLY: Explain why the alkanes are saturated hydrocarbons			
-	Chem ONLY: Recall the formulae of molecules of the alkenes, ethene, propene, butene, and draw the			
	structures (but-1-ene and but-2-ene only)			
	Chem ONLY: Explain why the alkenes are unsaturated hydrocarbons			
	Chem ONLY: Recall the addition reaction of ethene with bromine, showing the structures of reactants			
	and products, and extend this to other alkenes			
	Chem ONLY: Explain how bromine water is used to distinguish between alkanes and alkenes			
	Chem ONLY: Describe how the complete combustion of alkanes and alkenes involves the oxidation of the			
	hydrocarbons, name the products			

	Chem ONLY: Recall that a polymer is a substance of high average relative molecular mass made up of small repeating units		
	Chem ONLY: Describe how ethene molecules can combine together in a polymerisation reaction		
	Chem ONLY: Describe that the addition polymer formed is called polyethene		
	Chem ONLY: Describe how other addition polymers can be made by combining together other monomer		
	molecules containing C=C		
	Chem ONLY: Describe how to deduce the structure of a monomer from the structure of an addition		
	polymer and vice versa		
	Chem ONLY: Explain how the uses of polymers are related to their properties and vice versa		
	HT & Chem ONLY: Explain why polyesters are condensation polymers		
	HT & Chem ONLY: Explain how a polyester is formed when a monomer molecule containing two		
	carboxylic acid groups is reacted with a monomer molecule containing two alcohol groups		
	HT & Chem ONLY: Explain how a molecule of water is formed each time an ester link is formed		
	Chem ONLY: Describe some problems associated with polymers including the availability of starting		
	materials		
	Chem ONLY: Describe the advantages and disadvantages of recycling polymers, including economic		
	implications, availability of starting materials and environmental impact		
	Chem ONLY: Recall that DNA is a polymer made from four different monomers called nucleotides		
Q	Chem ONLY: Recall that starch is a polymer based on sugars		
art	Chem ONLY: Recall that proteins are polymers based on amino acids		
2 F	Chem ONLY: Recall the formulae of molecules of the alcohols, methanol, ethanol, propanol and butanol,		
ŧτ	and draw the structures of these molecules, showing all covalent bonds		
mis	Chem ONLY: Recall that the functional group in alcohols is –OH		
ē	Chem ONLY: Core Practical: Investigate the temperature rise produced in a known mass of water by the		
ë	combustion of the alcohols ethanol, propanol, butanol and pentanol		
ara	Chem ONLY: Recall the formulae of molecules of the carboxylic acids, methanoic, ethanoic, propanoic		
è	and butanoic acids, and draw the structures of these molecules, showing all covalent bonds		
S	Chem ONLY: Recall that the functional group in carboxylic acids is –COOH		
96	Chem ONLY: Recall that ethanol can be oxidised to produce ethanoic acid and extend this to other		
Topic 9b – Separate chemistry 2 part b	alcohols		
ဥ	Chem ONLY: Recall members of a given homologous series have similar reactions because their		
	molecules contain the same functional group and use this to predict the products of other in series		
	Chem ONLY: Describe the production of ethanol by fermentation of carbohydrates in aqueous solution,		
	using yeast to provide enzymes		
	Chem ONLY: Explain how to obtain a concentrated solution of ethanol by fractional distillation of the		
	fermentation mixture		
	Chem ONLY: Compare the size of nanoparticles with the sizes of atoms and molecules		
	Chem ONLY: Describe how the properties of nanoparticulate materials are related to their uses including		
	surface area to volume ratio of the particles they contain, including sunscreens		
	Chem ONLY: Explain the possible risks associated with some nanoparticulate materials		
	Chem ONLY: Compare, using data, the physical properties of glass and clay ceramics, polymers,		
	composites and metals		
	Chem ONLY: Describe how the properties of nanoparticulate materials are related to their uses including		
	surface area to volume ratio of the particles they contain, including sunscreens		
	Chem ONLY: Explain the possible risks associated with some nanoparticulate materials	$\sqcup \sqcup$	
	Chem ONLY: Compare, using data, the physical properties of glass and clay ceramics, polymers,		
	composites and metals	$\vdash \vdash \vdash$	
	Chem ONLY: Explain why the properties of a material make it suitable for a given use and use data to		
	select materials appropriate for specific uses		