20 Key Calculations

- 1. Relative Formula Mass
- 2. <u>Concentration (g/dm³)</u>
- 3. Moles to Particles
- 4. Moles Triangle
- 5. <u>Concentration (mol/dm³)</u>
- 6. Converting Concentration
- 7. <u>Titration Calculation</u>
- 8. <u>Empirical Formula from</u> <u>Molecular Formula</u>
- 9. <u>Molecular Formula from</u> <u>Empirical Formula</u>
- 10. <u>Empirical Formula from</u>
 <u>Reacting Masses</u>

- 11. <u>Empirical Formula from</u> %composition
- 12. <u>Conservation of Mass</u>
- 13. Reacting Masses
- 14. Limiting Reagent
- 15. % Yield
- 16. Atom Economy
- 17. Gas Volume
- 18. <u>Isotope Calculation</u>
- 19. R_f Value
- 20. Bond Enthalpy

1-Relative Formula Mass

The <u>relative formula mass</u> (RFM) is calculated by adding together the atomic masses of all the atoms shown in the formula.

Example: Calculate the relative formula mass of ammonia, NH_3 . The relative atomic masses are: H=1 and N=14)

RFM = 14 + (3x1)=17.

You try:

Bronze: Calculate the relative formula mass of O_2 (The relative atomic mass of O=16)

Silver: Calculate the relative formula mass of NaNO₃ (The relative atomic mass of Na=23, N=14, O=16)

Gold: Calculate the relative formula mass of $Mg(OH)_2$ (The relative atomic mass of Mg = 24, O=16, H=1)

1-Relative Formula Mass - Answers

Bronze: Calculate the relative formula mass of O_2 (The relative atomic mass of O=16)

RFM= 14 + (3x1)=17

<u>Silver</u>: Calculate the relative formula mass of NaNO $_3$ (The relative atomic mass of Na=23, N=14, O=16)

$$RFM + 23 + 14 + (3x16) = 62$$

Gold: Calculate the relative formula mass of $Mg(OH)_2$ (The relative atomic mass of Mg = 24, O=16, H=1)

$$RFM = 24 + 2(16 + 1) = 58$$

1-Calculating Relative Formula Mass

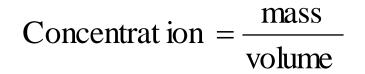
Q1. Calculate the relative formula mass of water, H₂O.

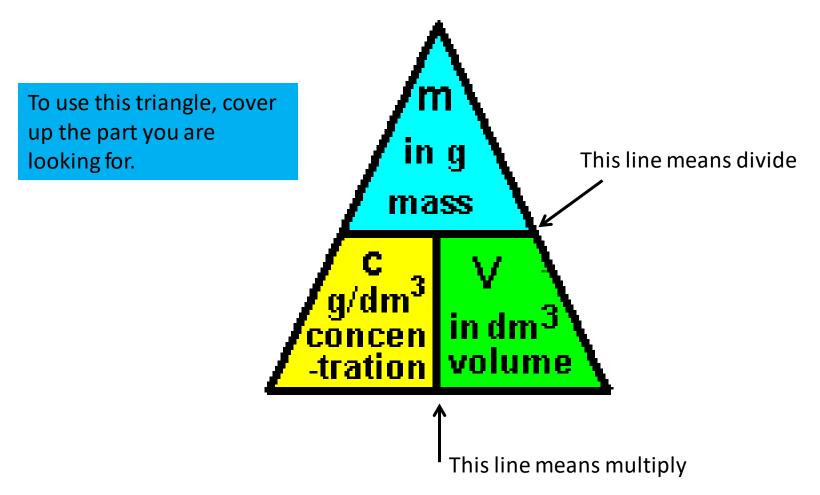
(Relative atomic masses: H = 1.0, O = 16)

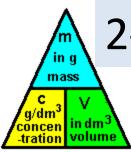
$$=(1x2) + 16 = 18$$

Q2. Calculate the relative formula mass of iron chloride, FeCl₃. (Relative formula masses: Cl = 35.5, Fe = 56)

$$= 56 + (35.5x3) = 162.5$$


Q3. Calculate the relative formula mass of copper chloride, $CuCl_2$. (Relative atomic masses: Cu = 63.5, Cl = 35.5)


$$= 63.5 + (35.5x2) = 134.5$$


Q4. Calculate the relative formula mass of calcium chloride, $CaCl_2$. (Relative atomic masses: Ca = 40; Cl = 35.5)

$$=40 + (35.5x2) = 111$$

2-Calculating Concentration

2-Calculating Concentration

 $1000 \text{ cm}^3 = 1 \text{ dm}^3$

Concentration =
$$\frac{\text{mass}}{\text{volume}}$$

Example:

What is the concentration of a solution made from 25g of sodium hydroxide and 100 dm³ of water?

Concentration =
$$\frac{25}{100}$$
 = 0.25 g / dm³

You try:

- Calculate the concentration of a solution made from 10g of sodium hydroxide and 200 dm³ of water.
- 2. What is the concentration of a solution made from 2.5g of sodium chloride and 12 dm³ of water?
- 3. How many grams are needed to make 500 dm³ of solution of potassium hydroxide with a concentration of 5 g/dm³?
- 4. What volume of water is needed to make a solution 7g/dm³ solution from 2g of sodium carbonate?
- 5. What is the concentration in g/dm³ of a solution made from 0.9g of sugar and 25 cm³ of water?

You try:

2-Calculating Concentration - Answers

1. Calculate the <u>concentration</u> of a solution made from 10g of sodium hydroxide and 200 dm⁻³ of water.

Concentration =
$$\frac{10}{200} = 0.05 g / dm^3$$

2. What is the <u>concentration</u> of a solution made from 2.5g of sodium chloride and 12 dm³ of water?

Concentration =
$$\frac{2.5}{12} = 0.21g / dm^3$$

3. How many grams are needed to make 500 dm³ of solution of potassium hydroxide with a concentration of 5 g/dm³?

Mass = concentrat ion
$$\times$$
 volume = $5 \times 500 = 2500g$

4. What <u>volume</u> of water is needed to make a solution 7g/dm³ solution from 2g of sodium carbonate?

Volume =
$$\frac{\text{mass}}{\text{concentrat ion}} = \frac{2}{7\text{g}} = 0.285 \text{dm}^3$$

5. What is the <u>concentration</u> in g/dm³ of a solution made from 9g of sugar and 25 cm³ of water?

Concentrat ion = $\frac{9}{25}$ x1000 = 360g/dm³

You will be given this constant on your exam

Calculating the number of particles:

To calculate the number of particles, multiply the number of moles by 6.0×10^{23} .

How many particles?

1. 2 moles of carbon

particles = moles
$$\times 6.0 \times 10^{23} = 2 \times 6.0 \times 10^{23} = 1.2 \times 10^{24}$$

- 2. 0.04 moles of CO_2 particles = moles $\times 6.0 \times 10^{23} = 0.04 \times 6.0 \times 10^{23} = 2.4 \times 10^{22}$
- 3. 0.5 moles of HCl

particles = moles
$$\times 6.0 \times 10^{23} = 0.5 \times 6.0 \times 10^{23} = 3.0 \times 10^{23}$$

3-Using Avogadro's Constant

You will be given this constant on your exam

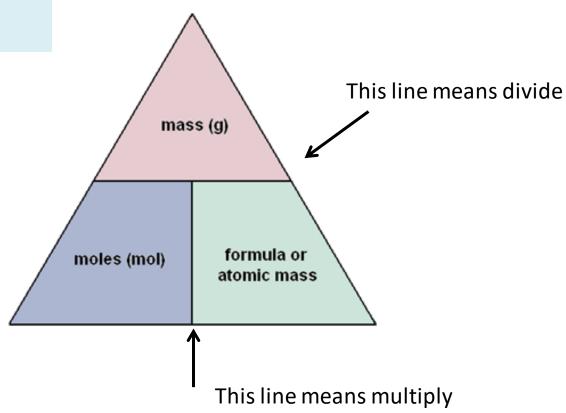
<u>Calculating the number of moles</u>:

To calculate the number of moles, divide the number of particles by 6.0×10^{23} .

How many moles?

1. 1000 molecules of oxygen

moles =
$$\frac{\text{particles}}{6 \times 10^{23}} = \frac{1000}{6 \times 10^{23}} = 1.7 \times 10^{-21}$$


- 2. 2,000,000 molecules of hydrogen
- moles = $\frac{\text{particles}}{6 \times 10^{23}} = \frac{2,000,000}{6 \times 10^{23}} = 3.3 \times 10^{-18}$ 3. 3 x 10²⁵ atoms of helium

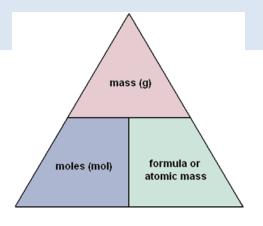
moles =
$$\frac{\text{particles}}{6 \times 10^{23}} = \frac{3 \times 10^{25}}{6 \times 10^{23}} = 50$$

4-The Moles Triangle

$$moles = \frac{mass}{RFM/RAM}$$

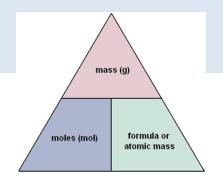
To use this triangle, cover up the part you are looking for.

Bronze: How many moles in . . .?


- 1. 12g of Mg (RAM of Mg=24)
- 2. $2g ext{ of } H_2 ext{ (RAM of H=1)}$
- 3. $51g {of NH}_3 {(RAM of H=1, N=14)}$

Silver: How many grams in . . .?

- 1. 1 mole of carbon (RAM of C=12)
- 2. 0.2 moles of CO2 (RAM of C=12, O=16)
- 3. 0.5 moles of HCl (RAM of H=1, Cl=35.5)


Gold: How many particles in . . .?

- 1. $3g ext{ of } Mg (RAM ext{ of } Mg = 24)$
- 2. 0.5g of Water, H_2O (RAM of H=1, O=16)

You have to learn this triangle

Bronze: How many moles in . . .?

$$moles = \frac{mass}{RAM} = \frac{12}{24} = 0.5$$

2.
$$2g ext{ of } H_2 ext{ (RAM of H=1)}$$

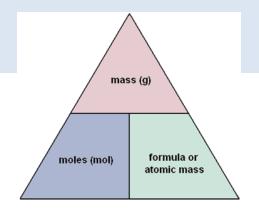
moles =
$$\frac{\text{mass}}{\text{RFM}} = \frac{2}{2} = 1$$

3.
$$51g {of} {NH}_3 {(RAM of H=1, N=14)}$$

$$moles = \frac{mass}{RFM} = \frac{51}{17} = 3$$

<u>Silver</u>: How many grams in . . .?

1. 1 mole of carbon (RAM of C=12)


$$mass = moles \times RAM = 1 \times 12 = 12g$$

2. 0.2 moles of CO₂ (RAM of C=12, O=16)

$$mass = moles \times RFM = 0.2 \times 44 = 8.8g$$

3. 0.5 moles of HCl (RAM of H=1, Cl=35.5)

$$mass = moles \times RFM = 0.5 \times 36.6 = 18.25g$$

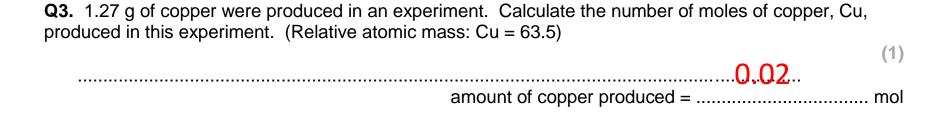
Gold: How many particles in . . .?

1. $3g ext{ of } Mg ext{ (RAM of Mg = 24)}$

Step 1: Calculate moles:

moles =
$$\frac{\text{mass}}{\text{RAM}} = \frac{3}{24} = 0.125$$

Step 2: Use Avogadro's Constant to calculate particles


particles = moles
$$\times 6.0 \times 10^{23} = 0.125 \times 6.0 \times 10^{23} = 7.5 \times 10^{22}$$

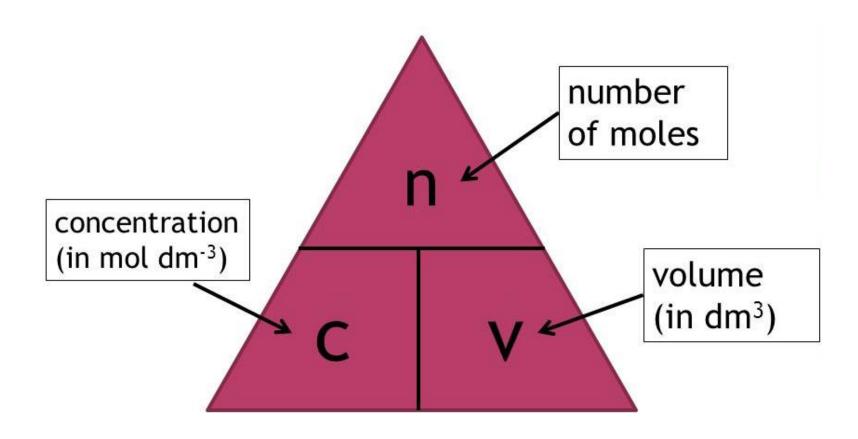
2. 0.5g of Water, H_2O (RAM of H=1, O=16)

moles =
$$\frac{\text{mass}}{\text{RFM}} = \frac{0.5}{18} = 0.028$$

particles = moles
$$\times 6.0 \times 10^{23} = 0.027 \times 6.0 \times 10^{23} = 1.67 \times 10^{22}$$

4-Exam Questions

Q2. Glucose has the formula $C_6H_{12}O_6$. Calculate the number of moles in a 0.25 g sample.


(relative atomic masses: H=1, C=12, O=16) RFM = 180

Moles = 0.0014

5-The Molarity Triangle

You have to learn this triangle

Concentration in moles/dm³ (molarity, M) can be calculated using the following triangle:

5-Using the Molarity Triangle:

Bronze: What is the concentration in moles/dm³ of:

number of moles

concentration (in mol dm⁻³)

volume (in dm³)

You have to learn

this triangle

- 1. 0.5 moles of hydrochloric acid in 1 dm³ of water
- 2. 1.5 moles of sodium carbonate in 0.5 dm³ of water

Silver: How many moles in?

- 1. 0.25 dm³ of a 0.05 mol/dm³ solution of sulfuric acid
- 2. 0.50 dm³ of a 2 mol/dm³ solution of sodium hydroxide?

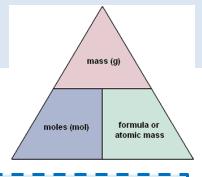
Gold: Calculate . . .

- The concentration in mole/dm³ from 0.75 moles of copper sulfate in 500 cm³ of water.
- The number of moles of ethanoic acid in 25 cm³ of a 1.5 mol/dm³ solution

Bronze: What is the concentration in moles/dm³ of: 0.5 moles of hydrochloric acid in 1 dm³ of water

1. 0.5 moles of hydrochloric acid in 1 dm³ of water
$$c = \frac{\text{moles}}{\text{volume}} = \frac{0.5}{1} = 0.5 \text{ mol/dm}3$$
2. 1.5 moles of sodium carbonate in 0.5 dm³ of water

Silver: How many moles in?
$$c = \frac{\text{moles}}{\text{volume}} = \frac{1.5}{0.5} = 3 \text{ mol/dm}^3$$
1. 0.25 dm³ of a 0.05 mol/dm³ solution of sulfuric acid


moles = $c \times volume = 0.05 \times 0.25 = 0.0125$ moles

- 0.50 dm³ of a 2 mol/dm³ solution of sodium hydroxide? moles = $c \times volume = 2 \times 0.5 = 1 \text{ mole}$ Gold: Calculate . . .
 - The concentration in mole/dm³ from 0.75 moles of copper sulfate in 500 cm³ of water. $c = \frac{\text{moles}}{\text{volume}} = \frac{0.75}{0.5} = 1.5 \text{ mol/dm}3$
 - The number of moles of ethanoic acid in 25 cm³ of a 1.5 mol/dm³ solution moles = $c \times volume = 1.5 \times 0.025 = 0.0375$ moles

6-Converting from mole/dm³ to g/dm³

To convert from mole/dm³ \rightarrow g/dm³

Multiply the concentration by the RFM/RAM.

Tip: Ignore the dm³ and treat this as a moles to grams calculation

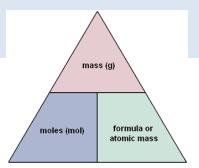
What is the concentration in g/dm³ of:

1. A 2 mol/dm³ solution of HCl (RAM H=1, Cl=35.5)

$$g/dm^3 = \text{mol/dm}^3 \times \text{RFM} = 2 \times 36.5 = 73g/dm^3$$

2. A 0.75 mol/dm^3 solution of NaOH (RAM H=1, O=16, Na=23)

$$g/dm^3 = mol/dm^3 \times RFM = 0.75 \times 40 = 30g / dm^3$$


3. A 0.05 mol/dm³ solution of NaCl (RAM Na=23, Cl=35.5)

$$g/dm^3 = \text{mol/dm}^3 \times \text{RFM} = 0.05 \times 58.5 = 2.9 g/dm^3$$

6-Converting from g/dm³ to mole/dm³

To convert the concentration from $g/dm^3 \rightarrow mole/dm^3$:

You divide by the RFM/RAM

Tip: Ignore the dm³ and treat this as a grams to moles calculation

What is the concentration in mole/dm³ of?

1. A 2g/dm³ solution of magnesium chloride, MgCl₂ (RAM Mg=24, Cl=35.5)

mole/dm³ =
$$\frac{\text{grams/dm}^3}{\text{RFM}} = \frac{2}{95} = 0.021 \text{ mole/dm}^3$$

2. A 5g/dm³ solution of KOH (RAM K=39, O=16, H=1) mole/dm³ = $\frac{\text{gram/dm}^3}{\text{RFM}} = \frac{5}{56} = 0.089 \text{ mole/dm}^3$

7-Calculating the Concentration of an Unknown

Equation: $C_AV_A = C_BV_B$

 C_A = concentration of acid, C_B = concentration of base/alkali

 V_A = volume of acid added, V_B = volume of base/alkali added

Example: In a titration of hydrochloric acid and sodium hydroxide, 25 cm³ of 0.50 M sodium hydroxide was added to a conical flask. From the burette, 23.25 cm³ of hydrochloric acid was needed to neutralise the sodium hydroxide. What is the concentration of the hydrochloric acid?

$$C_A = \frac{C_B V_B}{V_A} = \frac{0.50 \times 25}{23.2} = 0.54M$$

7-Exam Questions

Q1. Sodium hydroxide solution is titrated with dilute hydrochloric acid. The results of the experiment are 25.0 cm³ of sodium hydroxide solution reacted with 23.2 cm³ of 0.100 mol dm⁻³ hydrochloric acid, HCl. Calculate the concentration of this sodium hydroxide solution, NaOH, in mol dm⁻³.

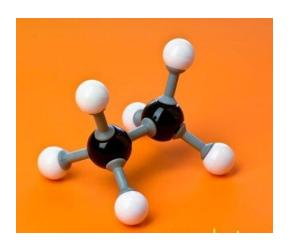
NaOH + HCl → NaCl + H₂O

concentration of sodium hydroxide solution =mol dm⁻³

(3)

$$C_B = \frac{C_A V_A}{V_B} = \frac{0.100 \times 23.2}{25.0} = 0.0928 M$$


Q2. In another experiment, a titration was carried out. 25.0 cm³ of 1.50 mol dm⁻³ sodium hydroxide solution, NaOH, was titrated with hydrochloric acid. The volume of the hydrochloric acid required to neutralise the sodium hydroxide solution was 30.0 cm³.


Calculate the concentration of the hydrochloric acid, HCI, in mol dm⁻³.

$$HCI + NaOH \rightarrow NaCI + H_2O$$

$$C_A = \frac{C_B V_B}{V_A} = \frac{1.50 \times 25.0}{30.0} = 1.25 M$$

8-Molecular v. Empirical formula

This model shows a molecule of ethane. The black circles represent carbon (C) and the white circles are hydrogen (H).

Key Words:

The molecular formula is the actual number of atoms in the molecule.

The <u>empirical formula</u> is the simplest **whole** number formula of a compound.

<u>Extension</u>: What is the <u>molecular formula</u> of the molecule shown above? What is its <u>empirical formula</u>?

8-Finding the empirical formula

Example: What is the empirical formula of H_2O_2 ?

<u>Answer</u>: Divide everything by the smallest number in the formula – in this case 2. Dividing through by 2 gives HO.

<u>TASK</u>: Find the empirical formulas of the following:

- 1. C_6H_6 CH
- 2. $C_6H_{12}O_6$ CH_2O
- 3. C_4H_8 CH_2

8-Exam Question

The formula of a molecule of ethane is C_2H_6 . Give the empirical formula of ethane. (1)

To calculate the empirical formula, divide by the smallest number in the formula (2). This gives CH_3 .

9-Calculating the molecular formula from the empirical formula

Example: The empirical formulae of a compound is CH₂O. The relative formula mass for the molecular formula is 180. What is the molecular formula?

Step 1: Calculate the relative formula mass for the empirical formula CH₂O:

$$RFM = 12 + (2x1) + 16 = 30$$

Step 2: Divide the molecular RFM by the empirical RFM

Step 3: Multiply the empirical formula by that number

Molecular formula =
$$6xCH_2O = C_6H_{12}O_6$$

9-Calculating the molecular formula from the empirical formula

Question: The empirical formulae of a compound is AlCl₃. The relative formula mass for the molecular formula is 267. What is the molecular formula?

<u>Step 1</u>: Calculate the relative formula mass of AlCl₃:

RFM = 27 + (3x35.5) = 133.5

Step 2: Divide the molecular RFM by the empirical RFM

267/133.5 = 2

Step 3: Multiply the empirical formula by that number

Molecular formula = $2xAICI_3 = AI_2CI_6$

10-Calculating the Empirical Formula

<u>Example</u>: A compound of aluminium chloride contained 0.135g of aluminium and 0.533g of chlorine. What is its empirical formula? (relative atomic mass (RAM) of Al=27, Cl=35.5)

Substance	Aluminium Chloride		
1. Elements	Al	CI	
2. Mass RAM	$\frac{0.135g}{27} = 0.005$	$\frac{0.533}{35.5} = 0.015$	
3. Divide by the smaller number	$\frac{0.005}{0.005} = 1$	$\frac{0.015}{0.005} = 3$	
4. Ratio	1:3		
5. Formula	Alc		

10-Exam Questions

Q1. In an experiment, 3.1 g of phosphorus reacted with 24 g of bromine to form phosphorus bromide.

Calculate the empirical formula of the phosphorus bromide.

You must show your working. (relative atomic masses: P = 31, Br = 80)

PBr₃ (3) empirical formula

Q2. An oxide of lead was analysed.

0.414 g of lead was combined with 0.064 g of oxygen in this oxide.

Calculate the empirical formula of this lead oxide. (relative atomic masses: O = 16, Pb = 207)

empirical formula PbO₂

Q3. A sample of calcium bromide contains 0.2 g calcium and 0.8 g bromine by mass. Calculate the empirical formula of calcium bromide. (relative atomic masses: Ca =

40, Br = 80)

CaBr₂

Q4. 14.3 g of an oxide of copper contained 12.7 g of copper.

Calculate the empirical formula of this oxide.

Show your working.

(Relative atomic masses: Cu = 63.5, O = 16)

Cu₂O

answer =

10-Writing a Balanced Equation

Example: 3.2g of copper reacted with 0.8g of oxygen to form a copper oxide. (Atomic Mass Cu=64: O=16) Use this information to determine the balanced equation for this reaction.

1. Calculate the empirical formula of the product.

$$Cu = \frac{3.2}{64} = 0.05$$
 $O = \frac{0.8}{15} = 0.05$ CuO

2. Write a symbol equation for the reaction:

$$Cu + O_2 \rightarrow CuO$$

3. Balance!

$$2Cu + O_2 \rightarrow 2CuO$$

10-Exam Question – writing an equation

When iron wool is heated in bromine vapour, it reacts to form iron bromide.

In an experiment, 5.60 g of iron reacted exactly with 24.0 g of bromine, Br₂.

[relative atomic masses: Fe = 56.0, Br = 80.0]

Determine, using this information, the balanced equation for the reaction between iron and bromine. You must show your working.

Question number	Answer	Additional guidance	Mark (4)
	 calculates mol of Fe (1) calculates mol of Br² (1) determines simplest ratio/LHS of equation (1) deduces formula of iron bromide produced/RHS of equation (1) OR divides mass by relative atomic mass (1) simplest ratio (1) empirical formula (1) deduces LHS to obtain balanced equation (1) 	Example of calculation mol Fe = $\frac{5.6}{56}$ = 0.1 mol Br ₂ = $\frac{24}{(2 \times 80)}$ = 0.15 ratio Fe: Br ₂ = 2: 3/ 2Fe + 3Br ₂ 2FeBr ₃ /Fe ₂ Br ₆ Fe Br $\frac{5.6}{56}$: $\frac{24}{80}$ 0.1 : 0.3 1 : 3 FeBr ₃ 2Fe + 3Br ₂ \Rightarrow 2FeBr ₃	This is the method you can use based on the prior slides

11-Calculating the Empirical Formula

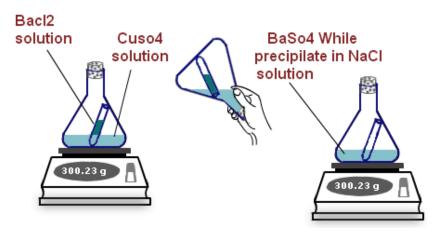
Example: An oxide of magnesium, X, has the following percentage composition by mass: Mg, 60%; O 40%.

Calculate the empirical formula of X (relative atomic mass (RAM) of O=16,

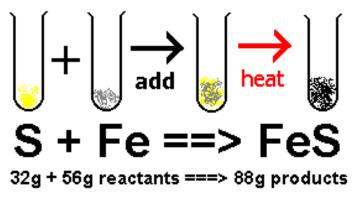
Mg=24)

Tip: Treat the % exactly how you treated the masses in calculation 10

Substance	Magnesium Oxide	
1. Elements	Mg	0
$\frac{2. \underline{\mathbf{Mass}}}{\mathbf{RAM}}$	$\frac{60}{24} = 2.5$	$\frac{40}{16} = 2.5$
3. Divide by the smaller number	$\frac{2.5}{2.5} = 1$	$\frac{2.5}{2.5} = 1$
4. Ratio	1:1	
5. Formula	Mg	JO

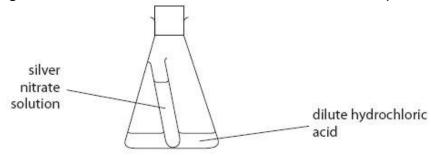

11-Calculating the Empirical Formula

1. An hydrocarbon, **Z**, has the following percentage composition by mass: C, 80%; H 20%. Calculate the empirical formula of **X** (RAM of H=1, C=12) CH₃


2. Silver nitrate has the following percentage composition by mass: Ag, 63.5%; N, 8.2%; O, 28.3%. Calculate the empirical formula. RAM of Ag=108, N=14, O=16)

AgNO₃

12-The Law of Conservation of Mass



The total *mass* of *products* at the end of the reaction is equal to the total mass of the *reactants* at the beginning.

12-Exam Questions

Q1. Dilute hydrochloric acid reacts with silver nitrate solution to form silver chloride and nitric acid. This apparatus is used to investigate the mass of the reactants and the mass of products in this reaction.

The total mass of this apparatus was measured.

The flask was shaken to allow the silver nitrate solution and dilute hydrochloric acid to react.

After the reaction the total mass of the apparatus was measured again.

State how the total mass of the apparatus after the reaction will compare with the total mass of the apparatus before the reaction.

The mass will stay the same

(1)

.....

Q2. When calcium carbonate is heated strongly it undergoes thermal decomposition.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

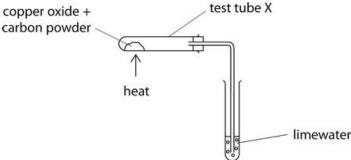
- 2.50 g of calcium carbonate was heated strongly.
- 1.40 g of solid remained after heating.

Calculate the mass of carbon dioxide produced during this reaction.

The mass of the products = mass of the reactants. So $2.50 = 1.40 + \text{mass of CO}_2$ (1) Mass of $CO_2 = 2.50 - 1.40 = 1.10g$

12-Exam Questions

Q3. Propene can be made by cracking fractions obtained from crude oil.


This equation shows the cracking of decane to produce propene and butane.

$$C_{10}H_{22} \rightarrow 2C_3H_6 + C_4H_{10}$$

decane propene butane

Give the total mass of products formed if 17 g of decane is cracked in this way.

Q4. A mixture of copper oxide and carbon powder was heated. Carbon dioxide was produced. It was bubbled into limewater.

The word equation for the reaction is copper oxide + carbon → copper + carbon dioxide

The mass of test tube X and its contents was measured before heating and after heating. There was a change in mass.

Explain why the total mass of the test tube and contents changes during the reaction.

The decreased (got smaller) because the CO₂ left the test tube

(2)

13-Reacting Mass Calculations

There are two methods for calculating reacting masses.

The first is the <u>ratio method</u>, which is easier to use but might make it harder to apply your knowledge to other questions.

The second method is based on <u>using moles</u> and is harder to use but will allow you to understand what is going on better.

Try these <u>exam questions</u>

13-Reacting Mass Calculations

Example: What mass of oxygen is needed to react with 12 of carbon to make carbon dioxide (CO_2) ? (RAM for C=12, RFM for O_2 =32)

The balanced equation is: $C + O_2 \rightarrow CO_2$

$$\frac{\text{Mass}_{\text{carbon}}}{\text{RAM}_{\text{carbon}}} = \frac{\text{Mass}_{\text{oxygen}}}{\text{RFM}_{\text{oxgyen}}}$$

$$\frac{\text{STEP 2}}{12} = \frac{\text{Mass}}{32}$$

Q: What mass of carbon is needed to react with 16g of oxygen?

STEP 3

mass of oxygen = 32 g.

6g

13-Reacting Mass Calculations-Extension

Example: In a firework, potassium nitrate (KNO₃) decomposes to form potassium nitrite (KNO₂) and oxygen (O₂). The equation is: $2KNO_3 \rightarrow 2KNO_2 + O_2$

Calculate the mass of <u>potassium nitrate</u> that would be needed to <u>make 1.6 g of oxygen</u> (Relative formula masses: $KNO_3 = 101$;

$$O_2 = 32$$
)

STEP 1

$$2 \times \frac{\text{Mass}}{\text{RFM}} = 1 \times \frac{\text{Mass}}{\text{RFM}}_{\text{KNO3}}$$

Note that the numbers are swapped. There is a 2 in front of the KNO₃ in the equation but in the ratio it goes in front of the oxygen.

$$\frac{\text{STEP 2}}{32} \qquad 2 \times \frac{1.6}{32} = 1 \times \frac{Mass}{101}$$

STEP 3 mas

mass of $KNO_3 = 10.1g$

Q: What mass of oxygen is made from 50.5 g of KNO₃? 16g

13-Reacting Mass Calculations—Using Moles

<u>Example</u>: Sodium chloride can be made from sodium hydroxide and hydrochloric acid according the this equation:

Calculate the mass of HCl needed to make 10 g of sodium chloride. RAM H = 1,

Step 1: Calculate the moles of NaCl You will need to calculate the

RFM as 23 + 35.5 = 58.5

moles =
$$\frac{\text{mass}}{\text{RFM}} = \frac{10}{58.5} = 0.171$$

<u>Step 2</u>: The number of moles of HCl = NaCl because its a 1:1 reaction. So moles of HCl = 0.171

Step 3: Convert the moles of HCl back into grams. The RFM of HCl = 1 + 35.5 = 36.5

g HCl = moles
$$x RFM = 0.171 x 36.5 = 6.3 g$$

13-Reacting Mass Calculations—Using Moles

Example: In a firework, potassium nitrate (KNO₃) decomposes to form potassium nitrite (KNO₂) and oxygen (O₂). The equation is: $2KNO_3 \rightarrow 2KNO_2 + O_2$

Calculate the mass of <u>potassium nitrate</u> that would be needed to <u>make 1.6 g of oxygen</u> (Relative formula masses: $KNO_3 = 101$; $O_2 = 32$)

Step 1: Calculate the moles of O₂. moles =
$$\frac{\text{mass}}{\text{RFM}} = \frac{1.6}{32} = 0.05$$

Step 2: Calculate the moles of KNO₃ using the balanced equation.

moles KNO₃ = $2 \times \text{moles O}_2 = 2 \times 0.05 = 0.1$

Step 3: Convert the moles of KNO₃ back into grams.

$$g \text{ KNO}_3 = \text{moles } x \text{ RFM} = 0.1 \times 101 = 10.1 \text{ g}$$

mass (g)

moles (mol)

Sodium reacts with chlorine to form sodium chloride.

$$2Na + Cl_2 \rightarrow 2NaCl$$

Calculate the maximum mass of sodium chloride that could be formed by reacting 9.20 g of sodium with excess chlorine.

(relative atomic masses: Na = 23.0, Cl = 35.5)

(3)

.....

In industry sodium carbonate is made from sodium chloride solution and calcium carbonate in the Solvay Process.

The overall equation for the Solvay Process is

2NaCl + CaCO₃ → Na₂CO₃ + CaC₂

Calculate the maximum mass of sodium carbonate that could be formed by reacting 40 kg of calcium carbonate with an excess of sodium chloride solution.

(Relative formula masses: $CaCO_3 = 100$; $Na_2CO_3 = 106$)

(2)

Question Number	Answer	Acceptable answers	Mark
(b)	EITHER 2x23 (1) g Na makes 2x58.5 (1) g NaCl	23.4 g with no working (3) 23.4 g from any method (3) do not accept 23(.0)	
	9.2 g Na makes (2x58.5)x9.2 g NaCl 46 (1) (= 23.4 g)	mol Na used = 9.2/23 (1) (= 0.4)	
	OR 23 g Na makes 58.5 (1) g NaCl 9.2 g Na makes (<u>58.5</u>)x9.2(1) g NaCl 23(1)	mol NaCl = 0.4 (1) mass NaCl = 0.4 x 58.5 (1) (= 23.4 g)	
	(1) (= 23.4 g)		
	mark consequentially eg 46 (1) g Na makes (2x23+35.5) (0) g NaCl	mark consequentially awarding 2 marks for 46.8 g,11.7 g and 16.3 g (see last example opposite).	
	9.2 g Na makes (2x23+35.5)x9.2 (1) g NaCl 46		
	(= 16.3 g)		(3)

Answer	Acceptable	Mark
	answers	
 100 (kg) (calcium carbonate) → 106 (kg) (sodium carbonate) (1) 	OR alternative 106÷100 40000÷100 /40÷100 (moles approach) Only 42.4 with no working worth 2 marks	
106x40 (1) (=42.4) 100	42400 g worth 2 marks	(2)

Q1. In an electrolysis, molten sodium fluoride is decomposed.

$$2NaF \rightarrow 2Na + F_2$$

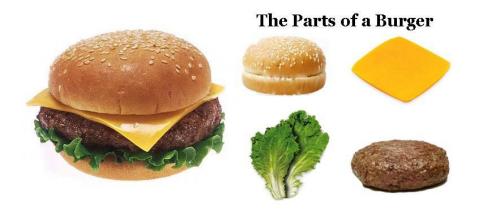
(relative atomic masses: F = 19, Na = 23) (relative formula mass NaF = 42)

Calculate the maximum mass of sodium that could be formed from 168 g of sodium fluoride.

Q2. The thermal decomposition of copper carbonate forms copper oxide and carbon dioxide.

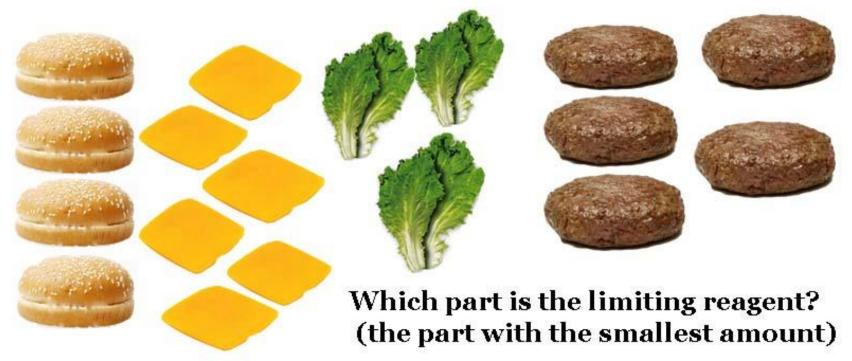
$$CuCO_3(s) \rightarrow CuO(s) + CO_2(g)$$

15.0 g of pure copper carbonate is decomposed completely. Calculate the mass of solid produced. (relative atomic masses: C = 12.0; O = 16.0; Cu = 63.5) Give your answer to two significant figures.


mass of solid = g

(2)

(2)

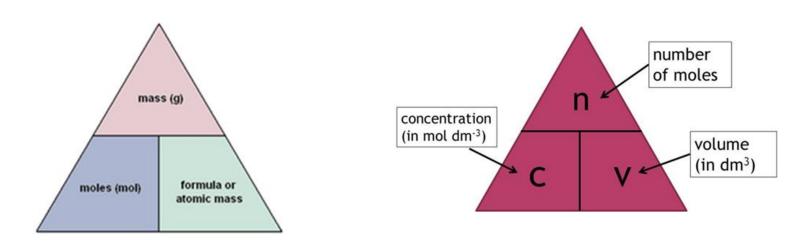

Question number	Answer	Mark
	 84 g sodium fluoride → 46 g of sodium (1) so 168 g sodium fluoride → 92 g of sodium (1) 	
	or	
	 168 ÷ 42 = 4 (mol NaF) (1) 	Appropri
	• $4 \times 23 = 92$ (q) (1)	7.5

relative formula mass copper carbonate $= 63.5 + 12.0 + (3 \times 16.0)$ = 123.5relative formula mass copper oxide = 63.5 + 16.0= 79.5(1)mass copper oxide $= \frac{15.0 \times 79.5}{123.5} = 9.7 \text{ g to 2 s.f. (1)}$ Answer must be to two significant figures OR moles of copper carbonate $=\frac{15.0}{123.5}=0.12145(1)$ mass of copper oxide = moles CuCO₃ × 79.5 = 9.7 g to 2sf(1)Answer must be to two significant figures

- •Only 3 burgers can be made.
- •The limiting reagent is the lettuce leaves.

Question 1 How many burgers can be made?

14-What is a limiting reagent?


The <u>limiting reagent</u> is the reactant that you have the least of. The amount of product you make depends of how much of the limiting reagent you have.

The reactant that you have the most of is said to be in excess.

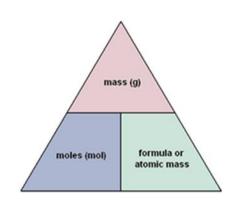
You could be asked to find the <u>limiting reagent</u> or the <u>reagent in excess</u>.

To find the limiting reagent (or the reagent in excess) compare the moles of both reactants and see which is greater.

To find the moles, you will have to use one of the following triangles:

Example 1: Carbon reacts with oxygen to form carbon dioxide:

$$C + O_2 \rightarrow CO_2$$


If 1g of carbon reacts with 1g of oxygen, which is the limiting reagent? Which is in excess?

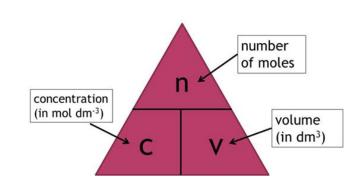
Calculate moles of carbon

moles =
$$\frac{\text{mass}}{\text{RAM}} = \frac{1}{12} = 0.083$$

Calculate moles of oxygen

moles =
$$\frac{\text{mass}}{\text{RFM}} = \frac{1}{32} = 0.032$$

Use this triangle to find moles


Answer: Oxygen is the limiting reagent and Carbon is in excess

Example 2: Hydrochloric acid and sodium hydroxide neutralise each other. $HCl + NaOH \rightarrow NaCl + H_2O$

If 1 dm³ of 0.5 mol/dm³ HCl reacts with 1dm³ of 0.25 mol/dm³ NaOH, which is the limiting reagent?
Which is in excess?

Calculate moles of HCl

moles =
$$c \times volume = 0.5 \times 1 = 0.5$$
 moles

Calculate moles of NaOH

moles =
$$c \times volume = 0.25 \times 1 = 0.25$$
 moles

Use this triangle to find moles

Answer: NaOH is the limiting reagent and HCl is in excess

1. What is the limiting reagent when 5g of Fe reacts with 5g of S to form iron sulphide?

Fe + S
$$\rightarrow$$
 FeS (RAM of Fe=56, S=32)

Answer: Iron is the limiting reagent and sulfur is in excess

2. What is the limiting reagent when 5 dm³ of 0.25 mol/dm³ of HCl reacts with 2 dm³ of 0.5 mol/dm³ NaOH?

$$HCI + NaOH \rightarrow NaCI + H_2O$$

Answer: NaOH is the limiting reagent and HCl is in excess

15-Calculating Percent Yield

percent yield =
$$\frac{\text{actual yield}}{\text{theoretica l yield}} \times 100\%$$

Questions:

1. What is the percentage yield of a reaction where the theoretical yield was 75 kg but the actual yield was 68 kg?

percent yield =
$$\frac{\text{actual yield}}{\text{theoretica 1 yield}} \times 100\% = \frac{68}{75} \times 100 = 91\%$$

2. During a practical a student made 30g of product, but the theoretical yield was 40g. What was the percentage yield?

percent yield =
$$\frac{\text{actual yield}}{\text{theoretica 1 yield}} \times 100\% = \frac{30}{40} \times 100 = 75\%$$

16-What is atom economy?

The <u>atom economy</u> of a chemical reaction is a measure of the amount of starting materials that become useful products.

% atom economy =
$$\frac{\text{total RFM of desired product}}{\text{total RFM mass of all products}} \times 100\%$$

16-How to calculate atom economy

Example: What is the atom economy for making hydrogen by reacting coal with steam?

$$C(s) + 2H_2O(g) \rightarrow CO_2(g) + 2H_2(g)$$

STEP 1: Calculate the total RFM of the desired product (H₂):

$$C(s) + 2H_2O(g) \rightarrow CO_2(g) + 2H_2(g)$$

2 × 2

=4

STEP 2: Calculate the total RFM mass of products

$$C(s) + 2H_2O(g) \rightarrow CO_2(g) + 2H_2(g)$$

44 + 2 × 2

=48

STEP 3: Put values into equation

% atom economy =
$$\frac{4}{48} \times 100 = 8.3\%$$

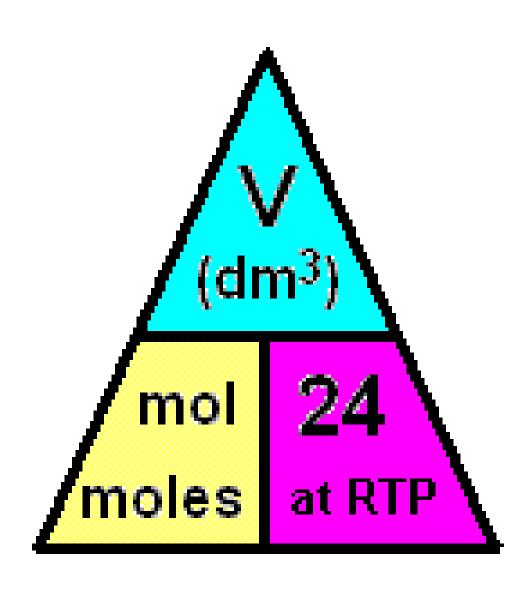
16-Calculating atom economy

Questions:

1. Calculate the atom economy for making hydrogen from methane: $CH_4 + H_2O \rightarrow CO + 3H_2$ (RAM H=1, C=12, O=16)

```
STEP 1: Total RFM of desired product = 3 x 2 = 6
STEP 2: Total RFM of all products = 28 + 6 = 34
```

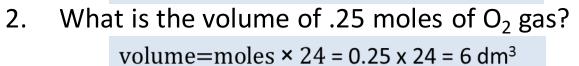
STEP 3: Atom economy = $6/34 \times 100 = 18 \%$


2. What is the atom economy of this process to make ethanol? $C_2H_4 + H_2O \rightarrow C_2H_5OH$ (RAM H=1, C=12, O=16)

Because there is only one product the atom economy will be 100%

3. What is the atom economy of extracting iron from its ore? $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ (RAM Fe=56, C=12, O=16)

```
STEP 1: Total RFM of desired product = 2 x 56 = 112
STEP 2: Total RFM of all products = 112 + 3x44 = 244
STEP 3: Atom economy = 112/244 x 100 = 46 %
```


17-Using the molar volume

17-Calculating volume from moles

For all questions assumes it is room temperature and pressure (RTP), so the molar volume is 24 dm³.

1. What is the volume of 1.5 moles of H_2 gas? volume=moles × 24 = 1.5 x 24 = 36 dm³

3. How many moles of CO₂ are there in 48 dm³ of gas?

$$moles = \frac{volume}{24} = \frac{48}{24} = 2$$
 moles

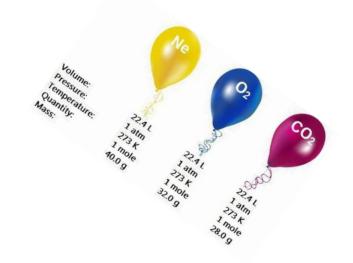
4. How many moles of Cl₂ are there in 2 dm³ of gas?

$$moles = \frac{volume}{24} = \frac{2}{24} = 0.083 \text{ moles}$$

1. How many grams of nitrogen are there in 10 dm³ of nitrogen (N_2) gas? (RAM N = 14)

STEP 1:
$$moles = \frac{volume}{24} = \frac{10}{24} = 0.417$$
 moles;
STEP 2: mass= moles X RFM =11.7

2. What is the volume of 1.2 g of Ne gas? (RAM Ne = 20)


STEP 1: moles =
$$\frac{mass}{RAM} = \frac{1.2}{20} = 0.06$$
 STEP 2: Volume = moles x 24 = 1.44 dm³

17-Gas Volumes and Reacting Masses

 Because the volume of gases is directly linked to the number of moles (and volume is the same for each gas), volumes can be used instead of moles in reacting mass calculations.

Example:

$$Cl_2(g) + H_2(g) \rightarrow 2HCl(g)$$

If there is 10 dm^3 of Cl_2 , then there needs to be 10 dm^3 of H_2 to react completely with it. There would be 20 dm^3 of HCl made because the ratio is 2 to 1.

Q1. Sulfur trioxide is produced by reacting sulfur dioxide with oxygen.

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

What volume of oxygen, in cm³, would react completely with 500 cm³ sulfur dioxide?

(1)

- A 500 ÷ 2
- B 500
- \square **C** 500 × 2
- \square **D** 500 × 32

Q2. When nitrogen and hydrogen react to form ammonia, the reaction can reach a dynamic equilibrium.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Calculate the minimum volume of hydrogen required to completely convert 1000 dm³ of nitrogen into ammonia.

(1)

volume of hydrogen = dm³

Q3. Hydrogen reacts with oxygen to form water vapour.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

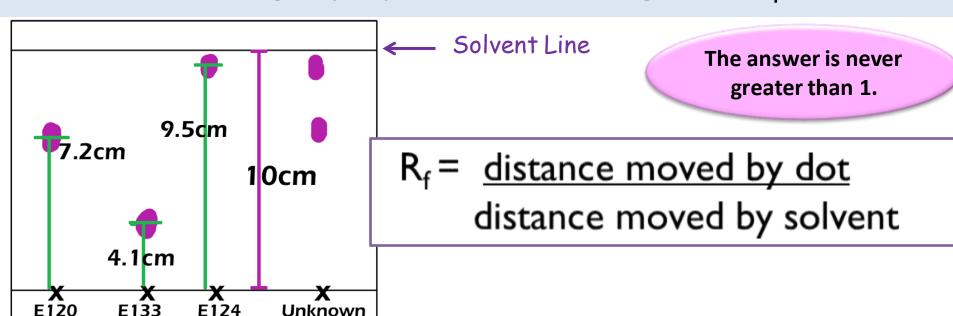
If 200 cm³ of hydrogen react completely with 100 cm³ of oxygen, what is the maximum volume of water vapour formed, if all volumes are measured at the same temperature and pressure?

- **A** 100 cm³
- B 200 cm³
- C 300 cm³
- \square **D** 400 cm³

18-Isotopes & Calculating Relative Atomic Mass

How to Calculate Relative Atomic Mass.

Example. 80% of Boron atoms are the Boron-11 isotope. 20% of Boron atoms are the Boron-10 isotope. What is the relative atomic mass of Boron?


```
Step 1: (80 \times 11) + (20 \times 10) = 1080
```

Step 2: $1080 \div 100 = 10.8$

18-Isotopes & Calculating Relative Atomic Mass

- 1. 75% of chlorine atoms are the ³⁵Cl isotope. 25% of chlorine atoms are the ³⁷Cl isotope. What is the relative atomic mass_of chlorine? 35.5
- 2. Lithium has an atomic number of 3. A sample of lithium is 7.6% Lithium-6 and 92.4% Lithium-7. Calculate the relative atomic mass of lithium. 6.9
- 3. Neon has an atomic number of 10. A sample of neon is 90.5% Neon-20. The rest of the sample is Neon-22. Calculate the relative atomic mass of neon. 20.2
- **4**. A sample of iron contains 6% Iron-54, 92% Iron-56 and 2% Iron-57. What is the relative atomic mass of iron in this sample? 55.9

19-Chromatography – Calculating the R_f Value

Questions:

- 1. Which E numbers are in the unknown?
- 2. Which are pure?
- 3. Which are mixtures?
- 4. Which E number is most soluble in the liquid?

Substance	Distance moved by dot	Distance moved by liquid	Rf
E120			
E133			
E124			

19-Chromatography – Exam Question

Q3. The chromatography was carried out and the result is shown in Figure 12.

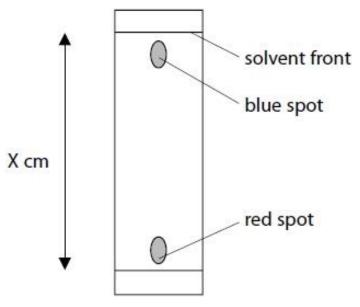


Figure 12

The blue spot had moved 14.5 cm and the solvent front had moved 15.3 cm. Calculate the $R_{\rm f}$ value of the substance in the blue spot, giving your answer to 2 significant figures.

$$R_f$$
 value =
$$\frac{\text{distance travelled by a dye}}{\text{distance travelled by solvent front}}$$

$$R_{\rm f} = \frac{14.5}{15.3} = 0.95$$

20-Bond Energy Calculations

Example: Calculate the energy change when water is formed from H_2 and O_2 .

STEP 1 Bonds Broken

$$2 \times (H-H) = 2 \times 436 = 872$$

$$1 \times (O=O) = 498$$

$$Total = 872 + 498 = 1370$$

STEP 2 Bonds Made

$$4 \times (O-H) = 4 \times 464 = 1856$$

STEP 3

	H	\mathcal{H}
Н—Н	, ,)
+ o=o -	→ ,0)、
	H	H

Bond	Bond Energy	
H-H	436	
H-O	464	
0=0	498	

Energy change = bonds broken – bonds made = 1370 - 1856 = -486

The negative sign means its exothermic.

Q5. The energies of some bonds are shown in Figure 13.

bond	energy of bond /kJ mol ⁻¹	
H—H	436	
CI—CI	243	

STEP 1 Bonds Broken

$$1 \times (H-H) = 436$$

Hydrogen r

$$1 \times (CI-CI) = 243$$

Calculate tl Total = 436 + 243 = 679 chlorine ga

1 mol of

(4)

STEP 2 Bonds Made

$$2 \times (H-CI) = 2 \times 432 = 864$$

STEP 3

Energy change = bonds broken – bonds made = 679 - 864 = -185 exothermic

$$\begin{array}{c|c} H & H \\ \hline H - C - H + Cl - Cl & \xrightarrow{Light} & H - C - Cl + H - Cl \\ \hline H & H \end{array}$$

Methane Chlorine Chloromethane