| 5.1 | a) Give a definition for a | a) Compound (1) made from | |-----|---|--| | 5.2 | hydrocarbon (2) b) Describe what crude oil is | hydrogen and carbon atoms only (1) | | 5.3 | made up of (it's composition) (1) | b) Mixture of hydrocarbon molecules | | | a) Name the process used to separate crude oil into useful | a) Fractional distillation (1) b) Heat crude oil to evaporate the | | | chemicals (1) b) Explain how fractional | oil(1), then cool to condense (1) separating chemicals depending | | | distillation works (3) | on their boiling points (1) | | 5.4 | a) Name the 6 main fractions of crude oil and say what | 1. Gases , used in domestic heating and cooking (1) | | | they are used for (6) | 2. Petrol , used as fuel for cars (1) | | | | 3. Kerosene , used as fuel for aircraft (1) | | | | 4. Diesel oil , used as fuel for some cars and trains (1) | | | | 5. Fuel oil , used as fuel for large | | | | ships and in some power stations 6. Bitumen , used to surface roads | | | | and roofs (1) | | 5.5 | Describe how hydrocarbon molecule size effects the: | a) Larger molecules have higher boiling points (1) | | | a) boiling point (1) | b) Smaller molecules are more | | | b) ease of ignition (1) | flammable (burn more easily) (1 | | | c) viscosity (1) | c) Larger molecules are more viscous (sticky/ hard to pour) | | 5.6 | a) Name the two products | a) Carbon dioxide (1) & water (1) | | | formed in the complete combustion of a | b) hydrogen and carbon gain | | | hydrocarbon. (2) | oxygen (1) | | | b) Explain why combustion is | c) They release heat energy (1 | | | an example of an oxidation reaction(1) | c) They release field effergy (1 | | | c) Why are combustion | | | F - | reactions useful? (1) | Dudala da a se e de la cerca della d | | 5.7 | Describe the chemical test
for carbon dioxide | Bubble the gas through lime water (1)/ it goes cloudy (1) | | 5.8 | a) Name two products formed | a) carbon monoxide (1)/ carbon | | | in the incomplete | (1) | | | combustion of hydrocarbons b) Explain why carbon | b) Lack of oxygen (1) | | | monoxide and carbon are | hydrocarbon can't be fully | | | formed in the incomplete | oxidised | | | combustion of hydrocarbons | | | 5.9
5.10 | Name a problem caused by carbon monoxide gas (1) I can describe two problems | Toxic/ takes place of oxygen in your blood/ can kill you (1) Carbon monoxide is a poison | |--------------|---|---| | 3.10 | caused by incomplete combustion of hydrocarbons in appliances (2) | (1)/ Carbon or soot makes
buildings dirty and causes global
dimming (1) | | 5.11 | a) I can name the impurity in hydrocarbon fuels that causes acid rain (1)b) I can name the main gas | a) Sulfur (1) b) Sulfur dioxide (1) sulphur | | 5.12 | that causes acid rain (1) Bonus write a word equation I can describe some of the effects of acid rain (1) | + → sulphur dioxide oxygen Destroys trees, kills fish and corrodes buildings | | 5.13 | a) Name 3 gases that cause global warming (3)b) I can explain how theses gases cause global warming | a) Carbon dioxide/ Methane/
water vapour (3) b) Green house gases trap suns
energy in the atmosphere/ | | 5.14 | c) I can describe how human activities cause gases in the Earths atmosphere to vary | keeping Earth warmer Burning fossil fuels / cutting down trees | | 5.15
5.16 | Name two methods scientists
are using to try and reduce
the level carbon dioxide in
the atmosphere today Use the graph below to help | • Iron seeding of oceans (1)/ converting carbon dioxide into hydrocarbons (1) (Iron increases photosynthesis in plants in the oceans, taking in | | | evaluate how far the correlation between global temperature and the proportion of carbon dioxide in the atmosphere provides evidence for climate change | Carbon dioxide levels have increased in the last 100 years, so has the average temperature on Earth. There is a correlation | | | 0-0.8 1860 1900 1940 1980 2020 2060 2100 | between increased carbon dioxide levels and increased temperature | | | Year | | | 5.17 | Name some possible alternatives to fossil fuels | • ethanol/ biodiesel / hydrogen (1) | |------|--|--| | 5.18 | a) Describe how the ethanol is madeb) Explain why alternative biofuels are important | a) From fermentation of sugar beet. (1) b) Reduces demand for petrol | | 5.19 | Evaluate the advantages and disadvantages of replacing fossil fuels with biofuels. (4) | a) Advantages: Biofuels are renewable (1)/ plants take in carbon dioxide when grown, this is released when fuel burned (1) (carbon neutral). Disadvantages: Growing crops takes up land(1) so less land for growing food, food prices could increase (1) | | 5.20 | Explain the properties that make a good fuel (4) | a) How flammable - The more easily it burns the better. (1) b) Amount of smoke produced- less smoke is better (1) c) Heat energy released- more heat make a better (1) d) How easy it is to transport- the easier the better. Liquids are better for cars (1) | | 5.21 | a) Write the word equation to show the reaction that takes place in a hydrogen fuel cell.b) Bonus mark write the balanced symbol equation | a) Hydrogen $+ \rightarrow \text{water}$ Oxygen (1) b) $2H_2 + O_2 \rightarrow 2H_2O$ (1) | | 5.22 | a) I can identify advantages of using the hydrogen fuel cell in cars instead of petrol.b) I can identify disadvantages of using the hydrogen fuel cell in cars instead of petrol. | a) Only waste product is water/ Can be made from renewable water using electrolysis b) Difficult to store gases as they take more space/ can be made from non-renewable oil this releases carbon dioxide | | 5.23 | a) Name 3 non-renewable fossil fuels found in crude oil (3) b) Name a non-renewable fossil fuel found in natural gas (1) | a) petrol (1) kerosene (1) and diesel oil (1) b) Methane (1) | | 5.24 | when ca
compar-
burning
b) Inter
showing
experim | tify variables to control arrying out a test to e the heat released by different fuels pret the results below temperature from this nent to identify the best plain how you know (2) Temperature rise °C 22 34 12 55 | heated/ sar
same distar
water is hea
tube or bea
b) Fuel D is th | me of water to be me mass of fuel/ fuel is nce from the water/ ated in the same size aker e best fuel (1) Biggest e increase(1) | |------|---|---|--|---| | 5.25 | • I can | described why alk a nes | Molecules | made from hydrogen | | 3.23 | | escribed as saturated | | atoms that only | | | • | ocarbons | | gle bonds between | | 5.27 | | described why alkenes | atoms | mada fuama budua gan | | | | escribed as unsaturated ocarbons | | made from hydrogen atoms that contain a | | 5.29 | _ | describe a test to tell if | | nd between two carbon | | | | mical is an alkane or an | atoms (the bonds between atoms | | | | alken | e | • | bon molecules are | | | | | covalent bo | bromine water/ | | | | | | ecolourise the water. | | | | | (In alk<u>a</u>ne | s the bromine water | | F 26 | D | | stays brow | | | 5.26 | Draw di
alkanes | agrams to represent the | a)
 н | b)
 н н | | | | ethane CH ₄ | Ĩ | H-C-C-H | | | , | nane C ₂ H ₆ | H—С—Н
 | н н | | | _ | opane C ₃ H ₈ | H | | | | d) Reca
for an a | ll the general formula
Ikane | с)
н н н | d) C _n H _{2n+2} | | | | mane | П П П П П П П П П П П П П П П П П П П | | | | | | | | | 5.28 | | agrams to represent the | a)
H H | b) | | | alkenes | :
nene C ₂ H ₄ | "\ | 7 7 7 | | | • | opene C ₃ H ₆ | | н—ċ—ċ=ċ | | | c) Re | call the general formula | н н | 4 4 | | | for | an alkene | C _n H _{2n} | 0.000 | | | | | | | | | | | | | | 5.30 | What happens to hydrocarbons during cracking? (2) Explain why cracking is necessary, refer to demand for different hydrocarbons and their uses(4) | Large hydrocarbons are broken into smaller alkanes (1) and alkenes (1) Large hydrocarbon alkanes are poor fuels (1)/ and are in less demand (1)/ Smaller hydrocarbon alkanes are in high demand (1)/ as they are better fuels (1)/ Alkenes are used to make plastics (1) | |------|---|--| | 5.32 | Describe how to crack liquid
paraffin in the laboratory.
Draw a diagram if it helps
(2) | Liquid paraffin is heated so it evaporates (1) & breaks into smaller molecules that are gases. Gases are collected under water. (1) | | 5.33 | a) What is a monomer? (1)b) What is a polymer? (1)c) What happens in a polymerisation reaction? (3)d) Name the polymer formed from the monomer ethene (1 | a) An alkene/ unsaturated hydrocarbon b) A long chain molecule made from a repeating structure c) The double bond in the monomer opens up (1) and many monomer molecules join together (1)to from a large polymer molecule (1 d) Poly(ethene) | | 5.35 | a) I can recall a use for poly(ethene) and name properties that make it suitable for the job b) I can recall a use for poly(chloroethene) or PVC and name properties that make it suitable for the job c) I can recall a use for PTFE and name properties that make it suitable for the job | a) Plastic bags/ plastics bottles/ cling film/ insulation for electrical wires (1) Flexible/cheap / good insulator (1) b) Window frames/ pipes/ insulation for electrical wires (1) Tough/ cheap/ good insulator (1) c) Non stick coatings/ Containers for corrosive chemicals (1) Tough/ slippery/ resistant to corrosion (1) | | 5.36 | a) I can define the term biodegradable (1) b) I can recall three ways of disposing of plastics (2) | a) Material breaks down overtime (1) b) Burry in land fill (1) burn (1) recycle (1) | | 5.34 | a) Name the polymer formed from propene (1) and draw the repeat unit after seeing the starting molecule (1) | a) Poly(propene) Starting molecule Repeat unit H H H H H H H H H H H H H H H H H H H | |------|---|--| | | b) Name the polymer formed from chloroethene (1) and draw the repeat unit after seeing the starting molecule (1) | b) Poly(chloroethene) Starting molecule Repeat unit $ \begin{array}{cccccc} H & CI \\ \hline C = C & \longrightarrow & - & - & - & - & - \\ H & H & & & - & - & - & - & - \\ \end{array} $ | | | c) Name the polymer formed from tetrafluoroethene (1) after seeing the starting molecule (1) | c) Poly(tetrafluoroethene) or PTFE Starting molecule Repeat unit $ \begin{array}{c} F \\ C = C \\ F \end{array} $ tetrafluoro-ethene | | 5.37 | a) Identify and evaluate the advantages and disadvantages of recycling plastic b) Identify and evaluate the advantages and disadvantages of burning plastic c) Identify and evaluate the advantages and disadvantages and disadvantages of making biodegradable plastic | a) Advantages: Less waste goes to land fill/ Conserves raw materials/ less energy is used/ Less carbon dioxide gas given off Disadvantages: Expensive to sort out plastics from other waste b) Advantages: Less waste goes to land fill/ Releases heat energy (1)/ used to generate electricity (1) Disadvantage: Could release harmful gases c) Advantage: Breaks down into harmless chemicals in the | ground/ reduces waste going to landfill Disadvantages: More expensive to make