	Edexcel Physics (1PI0) from 2016 Topics P1&2			
Topic	Student Checklist	R	Α	G
	Recall and use the SI unit for physical quantities, as listed in the specification			
- Ke	Recall and use multiples and sub-multiples of units, including giga (G), mega (M), kilo (k), centi (c), milli			
Topic 1 – Key concepts	(m), micro (μ) and nano (n)			
	Be able to convert between different units, including hours to seconds			
₽ 1	Use significant figures and standard form where appropriate			
	Describe what scalar and vector quantities are and explain the differences			
	Recall vector and scalar quantities, including: displacement/distance, velocity/speed, acceleration, force,			
	weight/mass, momentum and energy			
	Define what velocity is			
	Recall and use the equations: (average) speed (metre per second, m/s) = distance (metre, m) ÷ time (s)			
	Recall and use the equation: distance travelled (metre, m) = average speed (metre per second, m/s) × time (s)			
	Analyse distance/time graphs including determination of speed from the gradient			
	Recall and use the equation: $a=(v-u)/t$			
	Use the equation: $v^2 - u^2 = 2 \times a \times x$			
	Analyse velocity/time graphs to: compare acceleration from gradients qualitatively			
	Analyse velocity/time graphs to: calculate the acceleration from the gradient (for uniform acceleration			
	only)			
	Analyse velocity/time graphs to: determine distance travelled using area between the graph line and the			
	axis (for uniform acceleration only)			
	Describe a range of laboratory methods for determining the speeds of objects such as the use of light			
	gates			
	Recall some typical speeds encountered in everyday experience for wind and sound, and for walking,			l l
	running, cycling and other transportation systems			
es	Recall Newton's first law and use it where the resultant force on a body is zero			
opic 2 – Motion and forces	Recall Newton's first law and use it where the resultant force is not zero			
β	Recall and use Newton's second law as: F = m x a			<u> </u>
ar (Define weight, recall and use the equation: W = m x g			<u> </u>
tior	Describe how weight is measured			<u> </u>
Ν	Describe the relationship between the weight of a body and the gravitational field strength			<u> </u>
<u>.</u>	Core Practical: Investigate the relationship between force, mass and acceleration by varying the masses			
ic 2	added to trolleys			-
Тор	HT ONLY: Explain that an object moving in a circular orbit at constant speed has a changing velocity			\vdash
	HT ONLY: Explain that for motion in a circle there must be a resultant force known as a centripetal force that acts towards the centre of the circle			l l
	HT ONLY: Explain that inertial mass is a measure of how difficult it is to change the velocity of an			\vdash
	object			l l
	Recall and apply Newton's third law both to equilibrium situations			\vdash
	HT ONLY: Recall and apply Newton's third law solit to equilibrium studions			\vdash
	momentum in collisions			
	HT ONLY: Define momentum, recall and use the equation: $p = m \times v$			
	HT ONLY: Describe examples of momentum in collisions			
	HT ONLY: Use Newton's second law as: F = (mv - mu)/t			
	Explain methods of measuring human reaction times and recall typical results			
	Recall what the stopping distance of a vehicle is the sum of			
	Explain that the stopping distance of a vehicle is affected by a range of factors and name the factors			
	Describe the factors that could affect a driver's reaction time			
	Explain the dangers caused by large decelerations			
	HT ONLY: Estimate the forces involved in typical situations on a public road due to decelerations			
	Estimate how the distance required for a road vehicle to stop in an emergency varies over a range of			
	typical speeds			
	Carry out calculations on work done to show the dependence of braking distance for a vehicle on initial			
	velocity squared			

	Edexcel Physics (1PI0) from 2016 Topics P3,4&5			
Topic	Student Checklist	R	Α	G
	Recall and use the equation to calculate the change in gravitational PE when an object is raised above the ground: $\Delta GPE = m \times g \times \Delta h$			
	Recall and use the equation to calculate the amounts of energy associated with a moving object: $KE = \frac{1}{2} \times m \times v^2$			
	Draw and interpret diagrams to represent energy transfers			
	Explain what is meant by conservation of energy			
	Analyse the changes involved in the way energy is stored when a system changes for an object projected upwards or up a slope			
_	Analyse the changes involved in the way energy is stored when a system changes for a moving object hitting an obstacle			
energ	Analyse the changes involved in the way energy is stored when a system changes for an object being accelerated by a constant force			
on of	Analyse the changes involved in the way energy is stored when a system changes for a vehicle slowing down			
ervati	Analyse the changes involved in the way energy is stored when a system changes for bringing water to a boil in an electric kettle			
Topic 3 – Conservation of energy	Explain that where there are energy transfers in a closed system there is no net change to the total energy in that system			
ppic 3	Explain that mechanical processes become wasteful when they cause a rise in temperature so dissipating energy in heating the surroundings			
To	Explain, using examples, how in all system changes energy is dissipated so that it is stored in less useful ways			
	Explain ways of reducing unwanted energy transfer including through lubrication, thermal insulation			
	Describe the effects of the thickness and thermal conductivity of the walls of a building on its rate of cooling qualitatively			
	Recall and use the equation: efficiency = useful energy transferred / total energy supplied			
	HT ONLY: Explain how efficiency can be increased			
	Describe the main energy sources available for use on Earth and compare the ways in which both renewable and non-renewable sources are used			
	Explain patterns and trends in the use of energy resources			

	Recall that waves transfer energy and information without transferring matter	
	Describe evidence that with water and sound waves it is the wave and not the water or air itself that	
	travels	
	Define and use the terms frequency and wavelength as applied to waves	
	Use the terms amplitude, period, wave velocity and wavefront as applied to waves	
	Describe the difference between longitudinal and transverse waves by referring to sound,	
	electromagnetic, seismic and water waves	
	Recall and use both the equations for all waves: $v = f \times \lambda$ and $v = x/t$	
	Describe how to measure the velocity of sound in air and ripples on water surfaces	
	HT ONLY: Calculate depth or distance from time and wave velocity	
es	Describe the effects of reflection, refraction, transmission, absorption of waves at material interfaces	
– Waves	Explain how waves will be refracted at a boundary in terms of the change of direction	
	HT ONLY: Explain how waves will be refracted at a boundary in terms of the change of speed	
	HT ONLY: Recall that different substances may absorb, transmit, refract or reflect waves in ways that	
Topic 4	vary with wavelength	
2	HT ONLY: Describe the processes which convert wave disturbances between sound waves and	
	vibrations in solids	
	HT ONLY: Explain why processes that convert wave disturbances only work over a limited frequency	
	range	
	HT ONLY: Use the process that converts wave disturbances to explain the way the human ear works	
	HT ONLY: Recall the frequency of ultrasound and state its units	
	HT ONLY: Explain uses of ultrasound and infrasound	
	Describe how changes, if any, in velocity, frequency and wavelength, in the transmission of sound waves	
	from one medium to another are inter-related	
	Core Practical: Investigate the suitability of equipment to measure the speed, frequency and wavelength	
	of a wave in a solid and a fluid	

	Explain, with the aid of ray diagrams, reflection, refraction and total internal reflection (TIR), including		
	the law of reflection and critical angle		
	Explain the difference between specular and diffuse reflection		
	Explain how colour of light is related to differential absorption at surfaces and transmission of light		
	through filters		
	Relate the power of a lens to its focal length and shape		
	Use ray diagrams to show the similarities and differences in the refraction of light by converging and		
	diverging lenses		
	Explain the effects of different types of lens in producing real and virtual images		
	Recall that all electromagnetic waves are transverse, that they travel at the same speed in a vacuum		
	Explain, with examples, that all electromagnetic waves transfer energy from source to observer		
ctrı	Investigate refraction in rectangular glass blocks in terms of the interaction of electromagnetic waves		
èbe	with matter		
tic s	Recall the main groupings of the continuous electromagnetic spectrum		
'net	Describe the electromagnetic spectrum		
nag	Recall that our eyes can only detect a limited range of frequencies of electromagnetic radiation	 	
ron	HT ONLY: Recall that different substances may absorb, transmit, refract or reflect electromagnetic		
ect	waves in ways that vary with wavelength	-	
e el	Explain the effects of differences in the velocities of electromagnetic waves in different substances	\vdash	
th	Explain that all bodies emit radiation, that the intensity and wavelength distribution of any emission		
pue	depends on their temperature	+-+	
ht a	HT ONLY: Explain that for a body to be at a constant temperature it needs to radiate the same average power that it absorbs		
Lig	HT ONLY: Explain what happens to a body if the average power it radiates is less or more than the		
Topic 5 – Light and the electromagnetic spectrum	average power that it absorbs		
pic	HT ONLY: Explain how the temperature of the Earth is affected by factors controlling the balance		
70	between incoming radiation and radiation emitted		
	Core Practical: Investigate how the nature of a surface affects the amount of thermal energy radiated or		
	absorbed		
	Recall that the potential danger associated with an electromagnetic wave increases with increasing		
	frequency		
	Describe the harmful effects on people of excessive exposure to electromagnetic radiation		
	Describe some uses of electromagnetic radiation		
	HT ONLY: Recall that radio waves can be produced by, or can themselves induce, oscillations in		
	electrical circuits		
	Recall that changes in atoms and nuclei can generate radiations over a wide frequency range and be		
	caused by absorption of a range of radiations		

	Edexcel Physics (1PI0) from 2016 Topics P6a/b&7				
Topic	Student Checklist	R	Α	G	
	Describe the structure of the atom				
	Recall the typical size (order of magnitude) of atoms and small molecules				
	Describe the structure of nuclei of isotopes				
	Define the term isotope				
	Recall the relative masses and relative electric charges of protons, neutrons, electrons and positrons				
	Recall that in an atom the number of protons equals the number of electrons and is therefore neutral				
	Recall that in each atom its electrons orbit the nucleus at different set distances from the nucleus				
æ	Explain that electrons change orbit when there is absorption or emission of electromagnetic radiation				
Topic 6a– Radioactivity - part	Explain how atoms may form positive ions				
-	Recall that alpha, β –, β +, gamma rays and neutron radiation are emitted from unstable nuclei in a				
/ity	random process				
cti	Recall that alpha, β –, β + and gamma rays are ionising radiation				
ioa	Explain what is meant by background radiation				
3ad	Describe the origins of background radiation from Earth and space				
<u>_</u>	Describe methods for measuring and detecting radioactivity limited to photographic film and a Geiger-				
) C	Müller tube				
ido	Recall what alpha, beta and gamma radiation are made up of				
<u> </u>	Compare alpha, beta and gamma radiations in terms of their abilities to penetrate and ionise				
	Describe how and why the atomic model has changed over time including reference to the different				
	models and scattering experiments				
	Describe the process of β – and β + decay				
	Explain the effects on the atomic (proton) number and mass (nucleon) number of radioactive decays ($lpha$,				
	β, γ and neutron emission)				
	Recall that nuclei that have undergone radioactive decay often undergo nuclear rearrangement with a				
	loss of energy as gamma radiation				

	Use given data to balance nuclear equations in terms of mass and charge		
	Describe how the activity of a radioactive source decreases over a period of time		
	Recall that the unit of activity of a radioactive isotope is the Becquerel, Bq		
	Explain what half life of a radioactive isotope is		
	Explain that it cannot be predicted when a particular nucleus will decay but half-life enables the activity		
	of a very large number of nuclei to be predicted		
	Use the concept of half-life to carry out simple calculations on the decay of a radioactive isotope,		
	including graphical representations		
	Describe uses of radioactivity in: the home, industry and medicine		
	Describe the dangers of ionising radiation in terms of tissue damage and possible mutations and relate		
	this to the precautions needed		
	Explain how the dangers of ionising radiation depend on half-life and relate this to the precautions		
	needed		
t b	Explain the precautions taken to ensure the safety of people exposed to radiation, including limiting the		
par	dose		
<u>-</u>	Describe the differences between contamination and irradiation effects and compare the hazards		
₹	associated with these two	 	
act	Phy ONLY: Compare and contrast the treatment of tumours using radiation applied internally or		
oj G	externally Phy CNUY: Evaluin come of the come of radioactive substances in diagnosis of radioal conditions.	 	
Ra	Phy ONLY: Explain some of the uses of radioactive substances in diagnosis of medical conditions, including PET scanners and tracers		
- q	Phy ONLY: Explain why isotopes used in PET scanners have to be produced nearby		
Topic 6b– Radioactivity - part b	Phy ONLY: Evaluate the advantages and disadvantages of nuclear power for generating electricity		
ᅙ	Phy ONLY: Recall that nuclear reactions, including fission, fusion and radioactive decay, can be a source		
•	of energy		
	Phy ONLY: Explain the fission of U-235		
	Phy ONLY: Explain the principle of a controlled nuclear chain reaction		
	Phy ONLY: Explain how the chain reaction is controlled in a nuclear reactor, including the action of		
	moderators and control rods		
	Phy ONLY: Describe how thermal (heat) energy from the chain reaction is used in the generation of		
	electricity in a nuclear power station		
	Phy ONLY: Recall that the products of nuclear fission are radioactive		
	Phy ONLY: Describe nuclear fusion		
	Phy ONLY: Explain the difference between nuclear fusion and nuclear fission		
	Phy ONLY: Explain why nuclear fusion does not happen at low temperatures and pressures		
	Phy ONLY: Relate the conditions for fusion to the difficulty of making a practical and economic form of		
	power station		

	Phy ONLY: Explain how and why both the weight of any body and the value of g differ between the	
	surface of the Earth and the surface of other bodies in space	
	Phy ONLY: Recall what our solar system consists of	
	Phy ONLY: Recall the names and order, in terms of distance from the Sun, of the eight planets	
ı	Phy ONLY: Describe how ideas about the structure of the Solar System have changed over time	
ı	Phy ONLY: Describe the orbits of moons, planets, comets and artificial satellites	
	Phy ONLY: Explain for circular orbits how the force of gravity can lead to changing velocity of a planet but	
ı	unchanged speed	
	Phy ONLY: Explain how, for a stable orbit, the radius must change if orbital speed changes (qualitative	
ı	only)	
ı	Phy ONLY: Compare the Steady State and Big Bang theories	
, E	Phy ONLY: Describe evidence supporting the Big Bang theory, limited to red-shift and the cosmic	
Topic 7 – Astronomy	microwave background (CMB) radiation	
itro	Phy ONLY: Recall that as there is more evidence supporting the Big Bang theory than the Steady State	
. As	theory	
- /	Phy ONLY: Describe that if a wave source is moving relative to an observer there will be a change in the	
pic	observed frequency and wavelength	
2	Phy ONLY: Describe the red-shift in light received from galaxies at different distances away from the	
ı	Earth	
i	Phy ONLY: Explain why the red-shift of galaxies provides evidence for the Universe expanding	
ı	Phy ONLY: Explain how both the Big Bang and Steady State theories of the origin of the Universe both	
ı	account for red-shift of galaxies	
	Phy ONLY: Explain how the discovery of the CMB radiation led to the Big Bang theory becoming the	
	currently accepted model	
	Phy ONLY: Describe the evolution of stars of similar mass to the Sun	
	Phy ONLY: Explain how the balance between thermal expansion and gravity affects the life cycle of stars	
	Phy ONLY: Describe the evolution of stars with a mass larger than the Sun	
	Phy ONLY: Describe how methods of observing the Universe have changed over time including why some	
	telescopes are located outside the Earth's atmosphere	