	Edexcel (combined) Physics Topics (1SC0) from 2016 - Paper 2 (Topics 8&9)			
TOPIC	Student Checklist	R	Α	G
ng work	Describe the changes involved in the way energy is stored when systems change			
	Draw and interpret diagrams to represent energy transfers			
	Explain that where there are energy transfers in a closed system there is no net change to the total energy in that system			
	Identify the different ways that the energy of a system can be changed through work done by forces, in electrical equipment and in heating			
	Describe how to measure the work done by a force and recall that energy transferred (joule, J) is equal to work done (joule, J)			
9	Recall and use the equation: $\mathbf{E} = \mathbf{F} \times \mathbf{d}$			
Topic 8 – Energy – forces doing work	Describe and calculate the changes in energy involved when a system is changed by work done by forces			
	Recall and use the equation to calculate the change in gravitational PE when an object is raised above the ground: $\Delta GPE = m \times g \times \Delta h$			
Energy	Recall and use the equation to calculate the amounts of energy associated with a moving object: $KE = \frac{1}{2}$ $\times m \times v^2$			
c 8 – E	Explain, using examples, how in all system changes energy is dissipated so that it is stored in less useful ways			
Тор	Explain that mechanical processes become wasteful when they cause a rise in temperature so dissipating energy in heating the surroundings			
	Define power as the rate at which energy is transferred and use examples to explain this definition			
	Recall and use the equation: $P = E/t$			
	Recall what one Watt is equal to			
ļ	Recall and use the efficiency equation			
pu	Describe, with examples, how objects can interact with and without contact			
Topic 9 – Forces and their effects	Explain the difference between vector and scalar quantities using examples			
	HT ONLY: Use vector diagrams to illustrate resolution of forces, a net force, and equilibrium situations			
	HT ONLY: Draw and use free body force diagrams			
	HT ONLY: Explain examples of the forces acting on an isolated solid object or a system where several			
	forces lead to a resultant force			<u> </u>
	Explain ways of reducing unwanted energy transfer through lubrication			

	Edexcel (combined) Physics Topics (1SCO) from 2016 - Paper 2 (Topic 10a&10b)			
TOPIC	Student Checklist	R	Α	G
	Draw and use electric circuit diagrams			
	Describe the differences between series and parallel circuits			
	Recall how to measure potential difference using a voltmeter in series and parallel circuits			
	Define potential difference end describe what a volt is			
	Recall and use the equation: E = Q × V			
	Recall how to measure current using an ammeter in series and parallel circuits			
	Explain what electrical current is			
	Recall and use the equation: $Q = I \times t$			
	Describe that when a closed circuit includes a source of potential difference there will be a current in			
	the circuit			
(a)	Recall that current is conserved at a junction in a circuit			
art	Describe how to use a variable resistor in a circuit			
s (p	Recall and use the equation: $V = I \times R$			
Ë	Explain why, if two resistors are in series, the net resistance is increased, whereas with two in parallel			
circ	the net resistance is decreased			
Ď	Calculate the currents, potential differences and resistances in series circuits			
e ×	Explain the design and construction of series circuits for testing and measuring			
<u>ic</u>	Core Practical: Construct electrical circuits to: investigate the relationship between, V, I and R for a			
C L	resistor and a filament lamp			
Ele	Explain how I varies with V for the following devices and how this relates to R for filament lamps, diodes			
l G	and fixed resistors			
103	Describe how the resistance of a light-dependent resistor(LDR) varies with light intensity			
Topic 10a – Electricity and circuits (part a)	Describe how the resistance of a thermistor varies with change of temperature (neg temp thermistors			
₽	only)			
	Explain how the design and use of circuits can be used to explore the variation of resistance in: filament			
	lamps, diodes, thermistors & LDRs			
	Recall that, when there is an electric current in a resistor, there is an energy transfer which heats the			
	resistor			
	Explain how electrical energy is dissipated when an electrical current does work against electrical			
	resistance			
	Explain the energy transfer when electrical energy is dissipated when an electrical current does work			
	against electrical resistance			
	Explain ways of reducing unwanted energy transfer through low resistance wires			
	Describe the advantages and disadvantages of the heating effect of an electric current			
	Use the equation: $E = I \times V \times t$			
	Describe power as the energy transferred per second and recall that it is measured in watt			
~	Recall and use the equation: P = E/t			
f d	Explain how the power transfer in any circuit device is related to the potential difference across it and			
pai	the current in it			
ts (Recall and use the equations: $P = I \times V$ and $P = I^2 \times R$			
Ē	Describe how, in different domestic devices, energy is transferred from batteries and a.c. mains motors			
ᅙ	and heating devices			
pue	Explain the difference between direct and alternating voltage			
ξ	Describe what direct current (d.c.) is and recall the objects that supply it			
Topic 10b – Electricity and circuits (part b)	Describe what alternating current (a.c.) is and recall the frequency and voltage in the UK			
ect	Explain the difference in function between the live and the neutral mains input wires			
<u> </u>	Explain the function of an earth wire and of fuses or circuit breakers in ensuring safety			
و	Explain why switches and fuses should be connected in the live wire of a domestic circuit			
c 1(Recall the potential differences between the live, neutral and earth mains wires			
pji	Explain the dangers of providing any connection between the live wire and earth			
70	Describe, with examples, the relationship between the power ratings for domestic electrical appliances			
	and the changes in energy when used			

Edexce	(combined) Physics Topics (1SC0) from 2016 - Paper 2 (Topics 12,13,14 & 15)			
TOPIC	Student Checklist	R	Α	G
	Describe the interactions between like and unlike magnetic poles			
	Describe the uses of permanent and temporary magnetic materials including cobalt, steel, iron and			
	nickel			
	Explain the difference between permanent and induced magnets			
ಕ	Describe the shape and direction of the magnetic field around bar magnets and for a uniform field			
iffe	Relate the strength of the magnetic field to the concentration of lines			
Topic 12 – Magnetism and the motor effect	Describe the use of plotting compasses to show the shape and direction of the field of a magnet and the Earth's magnetic field			
	Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic			
pu	Describe how to show that a current can create a magnetic effect around a long straight conductor			
ism a	Describe the shape of the magnetic field produced and relating the direction of the magnetic field to the direction of the current			
agneti	Recall that the strength of the field depends on the size of the current and the distance from the long straight conductor			
2	Explain how inside a solenoid the fields from individual coils can add together or cancel			
pic 12	HT ONLY: Recall what happens when a current carrying conductor is placed near a magnet experiences in terms of force			
To	HT ONLY: Explain how magnetic forces are due to interactions between magnetic fields			
	HT ONLY: Recall and use Fleming's left-hand rule to represent the relative directions of the force			
	HT ONLY: Use the equation: $F = B \times I \times I$			
	HT ONLY: Explain how the force on a conductor in a magnetic field is used to cause rotation in electric motors			
Topic 13 – EM induction	Explain why, in the national grid, electrical energy is transferred at different voltages			
	Explain where and why step-up and step-down transformers are used in the transmission of electricity in the national grid			
	Use the power equation (for transformers with 100% efficiency): $V_p \times I_p = V_s \times I_s$			

	the simple birett the surrounded as subject to different the surrounded as	$\overline{}$
	Use a simple kinetic theory model to explain the different states of matter	
	Recall and use the equation: $\rho = m/V$	
	Core Practical: Investigate the densities of solid and liquids	
	Explain the differences in density between the different states of matter in terms of the arrangements	
	of the particles	
	Name and describe the physical changes of state	
	Describe the differences between chemical and physical changes	
de	Explain how heating a system will change the energy stored within the system and affect temperature at	
E S	the state of the material	
<u>e</u>	Define the terms specific heat capacity and specific latent heat and explain the differences between	
– Particle model	them	
	Use the equation: $\Delta Q = m \times c \times \Delta \theta$	
4	Use the equation: $\mathbf{Q} = \mathbf{m} \times \mathbf{L}$	
Topic 14	Explain ways of reducing unwanted energy transfers through thermal insulation	
o d	Core Practical: Investigate the properties of water by determining the specific heat capacity of water for	
	melting ice	
	Explain the pressure of a gas in terms of the motion of its particles	
	Explain the effect of changing the temperature of a gas on the velocity of its particles and hence on the	
	pressure	
	Describe the term absolute zero, –273 °C, in terms of movement of particles	
	Convert between the kelvin and Celsius scales	
	HT ONLY: Explain why doing work on a gas can increase its temperature, including a bicycle pump	
10	Explain, using springs and other elastic objects, that stretching, bending or compressing an object	
ã -	requires more than one force	
Topic 15 – Forces and matter	Describe the difference between elastic and inelastic distortion	
	Recall and use the equation for linear elastic distortion including calculating the spring constant: $F = k x x$	
	Use the equation to calculate the work done in stretching a spring: $E = \frac{1}{2} k x x^2$	
opi aı	Describe the difference between linear and non-linear relationships between force and extension	
ř	Core Practical: Investigate the extension and work done when applying forces to a spring	
	117.57	