Personalised Learning Checklists Edexcel Combined: Chemistry Paper 2

Topic	Edexcel (combined) Chemistry Topics (1SC0) from 2016 - Paper 2 (Topics C6&7) Student Checklist	R	Α	G
	Explain why some elements can be classified as alkali metals, halogens or noble gases, based on their			
	position in the periodic table			
	Recall the physical properties of alkali metals			
	Describe the reactions of lithium, sodium and potassium with water			Ī
	Describe the pattern in reactivity of the alkali metals, lithium, sodium and potassium, with water; and use			Г
	this pattern to predict the reactivity of other alkali metals			
	Explain this pattern in reactivity in terms of electronic configurations			
	Recall the colours and physical states of chlorine, bromine and iodine at room temperature			
<u>:</u>	Describe the pattern in the physical properties of the halogens, chlorine, bromine and iodine, and use			Ī
Topic 6 – Groups in the periodic table	this pattern to predict the physical properties of other halogens			
	Describe the chemical test for chlorine			Ī
	Describe the reactions of the halogens, chlorine, bromine and iodine, with metals to form metal halides,			
	and use this pattern to predict the reactions of other halogens			
	Recall that the halogens, chlorine, bromine and iodine, form hydrogen halides which dissolve in water to			
	form acidic solutions, and use this pattern to predict the reactions of other halogens			
	Describe the relative reactivity of the halogens chlorine, bromine and iodine, as shown by their			Ī
	displacement reactions with halide ions and use this to predict the reactions of astatine			
ğ	HT ONLY: Explain why these displacement reactions are redox reactions in terms of gain and loss of			
2	electrons, identifying which of these are oxidised and which are reduced			
	Explain the relative reactivity of the halogens in terms of electronic configurations			
	Explain why the noble gases are chemically inert, compared with the other elements, in terms of their			
	electronic configurations			
	Explain how the uses of noble gases depend on their inertness, low density and/or non-flammability			
	Describe the pattern in the physical properties of some noble gases and use this pattern to predict the			
	physical properties of other noble gases			
	Core Practical: Investigate the effects of changing the conditions of a reaction on the rates of chemical			
Topic 7 - Rates of reaction and energy changes	reactions by: measuring the production of a gas/observing a colour change			
	Suggest practical methods for determining the rate of a given reaction			
	Explain how reactions occur by discussing the collision theory			
	Explain the effects on rates of reaction of changes in temperature, concentration, surface area to volume			
	ratio and pressure in terms of frequency and energy of collisions			
	Interpret graphs of mass, volume or concentration of reactant or product against time			
	Describe what a catalyst is			
	Explain how the addition of a catalyst increases the rate of a reaction in terms of activation energy			
	Recall that enzymes are biological catalysts and that enzymes are used in the production of alcoholic			
	drinks			
	Recall when chemical changes occur that they cause changes in heat energy			
	Describe the differences between endothermic and exothermic in terms of energy taken in or given out			
	Recall if bonds are broken or made for each of the following reactions: endothermic and exothermic			
7 -	Describe why the overall heat energy change for a reaction is exothermic or endothermic in terms of			
Topic 7	bonds being made or broken			
	HT ONLY: Calculate the energy change in a reaction given the energies of bonds (in kJ mol ⁻¹)			
	Explain the term activation energy			L
	Draw and label reaction profiles for endothermic and exothermic reactions, identifying activation energy			

Personalised Learning Checklists Edexcel Combined: Chemistry Paper 2

	Edexcel (combined) Chemistry Topics (1SC0) from 2016 - Paper 2 (Topic C8)							
Topic	Student Checklist	R	Α	G				
ıce	Recall what a hydrocarbon is							
	Describe and explain what crude oil is and why it is important							
	Describe and explain the separation of crude oil into simpler, more useful mixtures by the process of							
	fractional distillation							
	Recall the names and uses of the following fractions: gases, petrol, kerosene, diesel oil, fuel oil and							
	bitumen							
	Explain how hydrocarbons in different fractions differ from each other in terms of boiling point, number							
	of C & H's, flammability and viscosity							
	Explain what a homologous series of hydrocarbon compounds is							
	Describe the complete combustion of hydrocarbon fuels including energy changes and products							
	Explain why the incomplete combustion of hydrocarbons can produce carbon and carbon monoxide							
	Explain how carbon monoxide behaves as a toxic gas							
ier	Describe the problems caused by incomplete combustion in appliances that use carbon compounds as							
)s u	fuels							
Topic 8 – Fuels and Earth science	Explain how impurities in some hydrocarbon fuels result in the production of sulfur dioxide							
	Explain some problems associated with acid rain							
	Explain why, when fuels are burned in engines, oxides of nitrogen are formed and that they are							
	pollutants							
	Evaluate the advantages and disadvantages of using hydrogen, rather than petrol, as a fuel in cars							
	Recall the names and sources of some renewable fossil fuels							
	Explain what cracking is and why it is necessary							
	Recall that the gases produced by volcanic activity formed the Earth's early atmosphere							
	Describe what the Earth's early atmosphere was thought to contain							
	Explain what the oceans were formed from							
	Explain why the amount of carbon dioxide in the atmosphere decreases when the oceans were formed							
	Explain how the growth of primitive plants changes the composition of gases in the atmosphere							
	Describe the chemical test for oxygen							
	Describe and explain the greenhouse effect and name the gases that contribute to it							
	Evaluate the evidence for human activity causing climate change							
	Describe the potential effects on the climate of increased levels of carbon dioxide and methane							
	generated by human activity							
	Describe how effects on the climate may be mitigated: consider scale, risk and environmental							
	implications							